File size: 8,430 Bytes
ded7cbd
 
 
 
 
005b8a9
ded7cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005b8a9
 
 
ded7cbd
005b8a9
 
 
 
 
 
 
 
ded7cbd
005b8a9
 
8afde48
 
005b8a9
 
8afde48
005b8a9
 
8afde48
 
 
005b8a9
8afde48
 
 
005b8a9
 
 
8afde48
005b8a9
 
 
8afde48
 
 
005b8a9
 
 
8afde48
 
005b8a9
 
8afde48
 
005b8a9
8afde48
005b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8afde48
 
005b8a9
8afde48
005b8a9
 
 
8afde48
 
 
 
 
 
ded7cbd
005b8a9
 
ded7cbd
 
005b8a9
 
 
 
 
 
 
 
8afde48
ded7cbd
 
8afde48
ded7cbd
 
 
005b8a9
 
 
 
 
ded7cbd
005b8a9
 
 
 
 
ded7cbd
005b8a9
ded7cbd
 
8afde48
ded7cbd
8afde48
 
 
 
 
 
 
 
005b8a9
 
 
8afde48
 
 
 
 
005b8a9
8afde48
 
ded7cbd
 
8afde48
ded7cbd
005b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8afde48
 
ded7cbd
8afde48
005b8a9
 
 
8afde48
005b8a9
 
8afde48
 
 
 
ded7cbd
8afde48
ded7cbd
005b8a9
ded7cbd
 
 
005b8a9
8afde48
005b8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded7cbd
8afde48
005b8a9
ded7cbd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import streamlit as st
import numpy as np
from wordllama import WordLlama
import plotly.graph_objects as go
import plotly.express as px
from sklearn.manifold import MDS
import pandas as pd

# Page configuration
st.set_page_config(
    page_title="WordLlama Explorer",
    page_icon="πŸ¦™",
    layout="wide"
)

# Custom CSS
st.markdown("""
    <style>
    .title-font {
        font-size: 28px !important;
        font-weight: bold;
        color: #2c3e50;
    }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_wordllama():
    return WordLlama.load()

wl = load_wordllama()

def create_similarity_based_visualization(texts):
    """Create visualization based on similarity distances"""
    n = len(texts)
    
    # Create similarity matrix
    similarity_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            similarity_matrix[i][j] = wl.similarity(texts[i], texts[j])
    
    # Convert similarities to distances (1 - similarity)
    distance_matrix = 1 - similarity_matrix
    
    if n == 2:
        # For 2 texts, create a simple 2D visualization
        fig = go.Figure()
        
        # Place points based on similarity
        similarity = similarity_matrix[0][1]
        fig.add_trace(go.Scatter(
            x=[0, 1-similarity],  # Distance proportional to similarity
            y=[0, 0],
            mode='markers+text',
            text=texts,
            textposition='top center',
            marker=dict(size=10, color=['blue', 'red'])
        ))
        
        fig.update_layout(
            title=f"Text Similarity Visualization (Similarity: {similarity:.3f})",
            xaxis_title="Relative Distance",
            yaxis_title="",
            height=400,
            showlegend=False,
            xaxis=dict(range=[-0.1, 1.1]),
            yaxis=dict(range=[-0.5, 0.5])
        )
        
    else:
        # For 3 or more texts, use MDS for 3D visualization
        mds = MDS(n_components=3, dissimilarity='precomputed', random_state=42)
        coords = mds.fit_transform(distance_matrix)
        
        # Create DataFrame for plotting
        df = pd.DataFrame(
            coords,
            columns=['X', 'Y', 'Z']
        )
        df['text'] = texts
        
        # Create 3D scatter plot
        fig = go.Figure(data=[go.Scatter3d(
            x=df['X'],
            y=df['Y'],
            z=df['Z'],
            mode='markers+text',
            text=texts,
            textposition='top center',
            marker=dict(
                size=10,
                color=list(range(len(texts))),
                colorscale='Viridis',
                opacity=0.8
            )
        )])
        
        # Add lines between points to show connections
        for i in range(n):
            for j in range(i+1, n):
                fig.add_trace(go.Scatter3d(
                    x=[coords[i,0], coords[j,0]],
                    y=[coords[i,1], coords[j,1]],
                    z=[coords[i,2], coords[j,2]],
                    mode='lines',
                    line=dict(
                        color=f'rgba(100,100,100,{similarity_matrix[i,j]:.2f})',
                        width=2
                    ),
                    showlegend=False
                ))
        
        fig.update_layout(
            title="3D Similarity Visualization",
            scene=dict(
                xaxis_title="Dimension 1",
                yaxis_title="Dimension 2",
                zaxis_title="Dimension 3"
            ),
            height=700
        )
    
    return fig

def main():
    st.title("πŸ¦™ WordLlama Similarity Explorer")
    st.markdown("<p class='title-font'>Visualize text similarities in 3D space</p>", 
                unsafe_allow_html=True)
    
    with st.expander("ℹ️ How to interpret the visualization", expanded=True):
        st.markdown("""
        - **Distance between points** represents dissimilarity (farther = less similar)
        - **Line opacity** indicates similarity strength (darker = more similar)
        - **Colors** help distinguish different texts
        - **Hover** over points to see full text content
        """)
    
    tabs = st.tabs(["πŸ’« Text Similarity", "🎯 Multi-Text Analysis"])
    
    with tabs[0]:
        st.markdown("### Compare Two Texts")
        
        col1, col2 = st.columns(2)
        with col1:
            text1 = st.text_area(
                "First Text",
                value="I love programming in Python",
                height=100
            )
        with col2:
            text2 = st.text_area(
                "Second Text",
                value="Coding with Python is amazing",
                height=100
            )
        
        if st.button("Analyze Similarity", key="sim_button"):
            similarity = wl.similarity(text1, text2)
            
            col1, col2 = st.columns(2)
            
            with col1:
                st.metric(
                    label="Similarity Score",
                    value=f"{similarity:.4f}",
                    help="1.0 = identical, 0.0 = completely different"
                )
                
                interpretation = (
                    "🟒 Very Similar" if similarity > 0.8
                    else "🟑 Moderately Similar" if similarity > 0.5
                    else "πŸ”΄ Different"
                )
                st.info(f"Interpretation: {interpretation}")
            
            with col2:
                st.plotly_chart(
                    create_similarity_based_visualization([text1, text2]),
                    use_container_width=True
                )
    
    with tabs[1]:
        st.markdown("### Analyze Multiple Texts")
        
        # Example templates
        examples = {
            "Similar Texts": [
                "I love programming in Python",
                "Python programming is my passion",
                "I enjoy coding with Python"
            ],
            "Mixed Similarity": [
                "The cat sleeps on the mat",
                "A cat is sleeping on the rug",
                "Python is a programming language"
            ],
            "Different Topics": [
                "The weather is sunny today",
                "Python is a programming language",
                "Cats are wonderful pets"
            ]
        }
        
        col1, col2 = st.columns([3, 1])
        with col1:
            selected_example = st.selectbox(
                "Choose an example set:",
                list(examples.keys())
            )
        with col2:
            if st.button("Load Example"):
                st.session_state.texts = examples[selected_example]
        
        num_texts = st.slider("Number of texts:", 2, 6, 3)
        texts = []
        
        for i in range(num_texts):
            default_text = (examples[selected_example][i] 
                          if selected_example in examples and i < len(examples[selected_example])
                          else f"Example text {i+1}")
            text = st.text_area(
                f"Text {i+1}",
                value=default_text,
                height=100,
                key=f"text_{i}"
            )
            texts.append(text)
        
        if st.button("Analyze Texts", key="analyze_button"):
            st.plotly_chart(
                create_similarity_based_visualization(texts),
                use_container_width=True
            )
            
            # Show similarity matrix
            st.markdown("### Similarity Matrix")
            similarity_matrix = np.zeros((len(texts), len(texts)))
            for i in range(len(texts)):
                for j in range(len(texts)):
                    similarity_matrix[i][j] = wl.similarity(texts[i], texts[j])
            
            fig = go.Figure(data=go.Heatmap(
                z=similarity_matrix,
                x=[f"Text {i+1}" for i in range(len(texts))],
                y=[f"Text {i+1}" for i in range(len(texts))],
                colorscale='Viridis',
                text=np.round(similarity_matrix, 3),
                texttemplate='%{text}',
                textfont={"size": 12},
            ))
            
            fig.update_layout(
                title="Similarity Matrix",
                height=400
            )
            
            st.plotly_chart(fig, use_container_width=True)

if __name__ == "__main__":
    main()