import torch import torchaudio.functional as F from torch import Tensor, nn from torchaudio.transforms import MelScale class LinearSpectrogram(nn.Module): def __init__( self, n_fft=2048, win_length=2048, hop_length=512, center=False, mode="pow2_sqrt", ): super().__init__() self.n_fft = n_fft self.win_length = win_length self.hop_length = hop_length self.center = center self.mode = mode self.register_buffer("window", torch.hann_window(win_length), persistent=False) def forward(self, y: Tensor) -> Tensor: if y.ndim == 3: y = y.squeeze(1) y = torch.nn.functional.pad( y.unsqueeze(1), ( (self.win_length - self.hop_length) // 2, (self.win_length - self.hop_length + 1) // 2, ), mode="reflect", ).squeeze(1) spec = torch.stft( y, self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, center=self.center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True, ) spec = torch.view_as_real(spec) if self.mode == "pow2_sqrt": spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec class LogMelSpectrogram(nn.Module): def __init__( self, sample_rate=44100, n_fft=2048, win_length=2048, hop_length=512, n_mels=128, center=False, f_min=0.0, f_max=None, ): super().__init__() self.sample_rate = sample_rate self.n_fft = n_fft self.win_length = win_length self.hop_length = hop_length self.center = center self.n_mels = n_mels self.f_min = f_min self.f_max = f_max or float(sample_rate // 2) self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center) fb = F.melscale_fbanks( n_freqs=self.n_fft // 2 + 1, f_min=self.f_min, f_max=self.f_max, n_mels=self.n_mels, sample_rate=self.sample_rate, norm="slaney", mel_scale="slaney", ) self.register_buffer( "fb", fb, persistent=False, ) def compress(self, x: Tensor) -> Tensor: return torch.log(torch.clamp(x, min=1e-5)) def decompress(self, x: Tensor) -> Tensor: return torch.exp(x) def apply_mel_scale(self, x: Tensor) -> Tensor: return torch.matmul(x.transpose(-1, -2), self.fb).transpose(-1, -2) def forward( self, x: Tensor, return_linear: bool = False, sample_rate: int = None ) -> Tensor: if sample_rate is not None and sample_rate != self.sample_rate: x = F.resample(x, orig_freq=sample_rate, new_freq=self.sample_rate) linear = self.spectrogram(x) x = self.apply_mel_scale(linear) x = self.compress(x) if return_linear: return x, self.compress(linear) return x