import matplotlib import torch from matplotlib import pyplot as plt matplotlib.use("Agg") def convert_pad_shape(pad_shape): l = pad_shape[::-1] pad_shape = [item for sublist in l for item in sublist] return pad_shape def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) def plot_mel(data, titles=None): fig, axes = plt.subplots(len(data), 1, squeeze=False) if titles is None: titles = [None for i in range(len(data))] plt.tight_layout() for i in range(len(data)): mel = data[i] if isinstance(mel, torch.Tensor): mel = mel.float().detach().cpu().numpy() axes[i][0].imshow(mel, origin="lower") axes[i][0].set_aspect(2.5, adjustable="box") axes[i][0].set_ylim(0, mel.shape[0]) axes[i][0].set_title(titles[i], fontsize="medium") axes[i][0].tick_params(labelsize="x-small", left=False, labelleft=False) axes[i][0].set_anchor("W") return fig def slice_segments(x, ids_str, segment_size=4): ret = torch.zeros_like(x[:, :, :segment_size]) for i in range(x.size(0)): idx_str = ids_str[i] idx_end = idx_str + segment_size ret[i] = x[i, :, idx_str:idx_end] return ret def rand_slice_segments(x, x_lengths=None, segment_size=4): b, d, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = torch.clamp(x_lengths - segment_size + 1, min=0) ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long) ret = slice_segments(x, ids_str, segment_size) return ret, ids_str @torch.jit.script def fused_add_tanh_sigmoid_multiply(in_act, n_channels): n_channels_int = n_channels[0] t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts def avg_with_mask(x, mask): assert mask.dtype == torch.float, "Mask should be float" if mask.ndim == 2: mask = mask.unsqueeze(1) if mask.shape[1] == 1: mask = mask.expand_as(x) return (x * mask).sum() / mask.sum()