import math def get_cosine_schedule_with_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int | float, num_training_steps: int, num_cycles: float = 0.5, final_lr_ratio: float = 0.0, ): if 0 < num_warmup_steps < 1: # float mode num_warmup_steps = int(num_warmup_steps * num_training_steps) if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) progress = float(current_step - num_warmup_steps) / float( max(1, num_training_steps - num_warmup_steps) ) return max( final_lr_ratio, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)), ) def get_constant_schedule_with_warmup_lr_lambda( current_step: int, *, num_warmup_steps: int | float, num_training_steps: int | None = None, ): if 0 < num_warmup_steps < 1: # float mode num_warmup_steps = int(num_warmup_steps * num_training_steps) if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return 1.0