import math from functools import partial from math import prod from typing import Callable import torch import torch.nn.functional as F from torch import nn from torch.nn.utils.parametrizations import weight_norm from torch.nn.utils.parametrize import remove_parametrizations from torch.utils.checkpoint import checkpoint def sequence_mask(length, max_length=None): if max_length is None: max_length = length.max() x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv1D") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return (kernel_size * dilation - dilation) // 2 def unpad1d(x: torch.Tensor, paddings: tuple[int, int]): """Remove padding from x, handling properly zero padding. Only for 1d!""" padding_left, padding_right = paddings assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) assert (padding_left + padding_right) <= x.shape[-1] end = x.shape[-1] - padding_right return x[..., padding_left:end] def get_extra_padding_for_conv1d( x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 ) -> int: """See `pad_for_conv1d`.""" length = x.shape[-1] n_frames = (length - kernel_size + padding_total) / stride + 1 ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) return ideal_length - length def pad1d( x: torch.Tensor, paddings: tuple[int, int], mode: str = "zeros", value: float = 0.0, ): """Tiny wrapper around F.pad, just to allow for reflect padding on small input. If this is the case, we insert extra 0 padding to the right before the reflection happen. """ length = x.shape[-1] padding_left, padding_right = paddings assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) if mode == "reflect": max_pad = max(padding_left, padding_right) extra_pad = 0 if length <= max_pad: extra_pad = max_pad - length + 1 x = F.pad(x, (0, extra_pad)) padded = F.pad(x, paddings, mode, value) end = padded.shape[-1] - extra_pad return padded[..., :end] else: return F.pad(x, paddings, mode, value) class FishConvNet(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, dilation=1, stride=1, groups=1 ): super(FishConvNet, self).__init__() self.conv = nn.Conv1d( in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, groups=groups, ) self.stride = stride self.kernel_size = (kernel_size - 1) * dilation + 1 self.dilation = dilation def forward(self, x): pad = self.kernel_size - self.stride extra_padding = get_extra_padding_for_conv1d( x, self.kernel_size, self.stride, pad ) x = pad1d(x, (pad, extra_padding), mode="constant", value=0) return self.conv(x).contiguous() def weight_norm(self, name="weight", dim=0): self.conv = weight_norm(self.conv, name=name, dim=dim) return self def remove_parametrizations(self, name="weight"): self.conv = remove_parametrizations(self.conv, name) return self class FishTransConvNet(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, dilation=1, stride=1): super(FishTransConvNet, self).__init__() self.conv = nn.ConvTranspose1d( in_channels, out_channels, kernel_size, stride=stride, dilation=dilation ) self.stride = stride self.kernel_size = kernel_size def forward(self, x): x = self.conv(x) pad = self.kernel_size - self.stride padding_right = math.ceil(pad) padding_left = pad - padding_right x = unpad1d(x, (padding_left, padding_right)) return x.contiguous() def weight_norm(self, name="weight", dim=0): self.conv = weight_norm(self.conv, name=name, dim=dim) return self def remove_parametrizations(self, name="weight"): self.conv = remove_parametrizations(self.conv, name) return self class ResBlock1(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.convs1 = nn.ModuleList( [ FishConvNet( channels, channels, kernel_size, stride=1, dilation=dilation[0] ).weight_norm(), FishConvNet( channels, channels, kernel_size, stride=1, dilation=dilation[1] ).weight_norm(), FishConvNet( channels, channels, kernel_size, stride=1, dilation=dilation[2] ).weight_norm(), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ FishConvNet( channels, channels, kernel_size, stride=1, dilation=dilation[0] ).weight_norm(), FishConvNet( channels, channels, kernel_size, stride=1, dilation=dilation[1] ).weight_norm(), FishConvNet( channels, channels, kernel_size, stride=1, dilation=dilation[2] ).weight_norm(), ] ) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.silu(x) xt = c1(xt) xt = F.silu(xt) xt = c2(xt) x = xt + x return x def remove_parametrizations(self): for conv in self.convs1: conv.remove_parametrizations() for conv in self.convs2: conv.remove_parametrizations() class ParallelBlock(nn.Module): def __init__( self, channels: int, kernel_sizes: tuple[int] = (3, 7, 11), dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), ): super().__init__() assert len(kernel_sizes) == len(dilation_sizes) self.blocks = nn.ModuleList() for k, d in zip(kernel_sizes, dilation_sizes): self.blocks.append(ResBlock1(channels, k, d)) def forward(self, x): return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0) def remove_parametrizations(self): for block in self.blocks: block.remove_parametrizations() class HiFiGANGenerator(nn.Module): def __init__( self, *, hop_length: int = 512, upsample_rates: tuple[int] = (8, 8, 2, 2, 2), upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2), resblock_kernel_sizes: tuple[int] = (3, 7, 11), resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)), num_mels: int = 128, upsample_initial_channel: int = 512, pre_conv_kernel_size: int = 7, post_conv_kernel_size: int = 7, post_activation: Callable = partial(nn.SiLU, inplace=True), ): super().__init__() assert ( prod(upsample_rates) == hop_length ), f"hop_length must be {prod(upsample_rates)}" self.conv_pre = FishConvNet( num_mels, upsample_initial_channel, pre_conv_kernel_size, stride=1, ).weight_norm() self.num_upsamples = len(upsample_rates) self.num_kernels = len(resblock_kernel_sizes) self.noise_convs = nn.ModuleList() self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( FishTransConvNet( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, stride=u, ).weight_norm() ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) self.resblocks.append( ParallelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes) ) self.activation_post = post_activation() self.conv_post = FishConvNet( ch, 1, post_conv_kernel_size, stride=1 ).weight_norm() self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.silu(x, inplace=True) x = self.ups[i](x) if self.training and self.checkpointing: x = checkpoint( self.resblocks[i], x, use_reentrant=False, ) else: x = self.resblocks[i](x) x = self.activation_post(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_parametrizations(self): for up in self.ups: up.remove_parametrizations() for block in self.resblocks: block.remove_parametrizations() self.conv_pre.remove_parametrizations() self.conv_post.remove_parametrizations() # DropPath copied from timm library def drop_path( x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True ): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ # noqa: E501 if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501 def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) def extra_repr(self): return f"drop_prob={round(self.drop_prob,3):0.3f}" class LayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ # noqa: E501 def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape,) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm( x, self.normalized_shape, self.weight, self.bias, self.eps ) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None] * x + self.bias[:, None] return x # ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py class ConvNeXtBlock(nn.Module): r"""ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0. kernel_size (int): Kernel size for depthwise conv. Default: 7. dilation (int): Dilation for depthwise conv. Default: 1. """ # noqa: E501 def __init__( self, dim: int, drop_path: float = 0.0, layer_scale_init_value: float = 1e-6, mlp_ratio: float = 4.0, kernel_size: int = 7, dilation: int = 1, ): super().__init__() self.dwconv = FishConvNet( dim, dim, kernel_size=kernel_size, # padding=int(dilation * (kernel_size - 1) / 2), groups=dim, ) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear( dim, int(mlp_ratio * dim) ) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim) self.gamma = ( nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x, apply_residual: bool = True): input = x x = self.dwconv(x) x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L) x = self.drop_path(x) if apply_residual: x = input + x return x class ConvNeXtEncoder(nn.Module): def __init__( self, input_channels: int = 3, depths: list[int] = [3, 3, 9, 3], dims: list[int] = [96, 192, 384, 768], drop_path_rate: float = 0.0, layer_scale_init_value: float = 1e-6, kernel_size: int = 7, ): super().__init__() assert len(depths) == len(dims) self.downsample_layers = nn.ModuleList() stem = nn.Sequential( FishConvNet( input_channels, dims[0], kernel_size=7, # padding=3, # padding_mode="replicate", # padding_mode="zeros", ), LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), ) self.downsample_layers.append(stem) for i in range(len(depths) - 1): mid_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv1d(dims[i], dims[i + 1], kernel_size=1), ) self.downsample_layers.append(mid_layer) self.stages = nn.ModuleList() dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(len(depths)): stage = nn.Sequential( *[ ConvNeXtBlock( dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value, kernel_size=kernel_size, ) for j in range(depths[i]) ] ) self.stages.append(stage) cur += depths[i] self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first") self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv1d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=0.02) nn.init.constant_(m.bias, 0) def forward( self, x: torch.Tensor, ) -> torch.Tensor: for i in range(len(self.downsample_layers)): x = self.downsample_layers[i](x) x = self.stages[i](x) return self.norm(x) class FireflyArchitecture(nn.Module): def __init__( self, backbone: nn.Module, head: nn.Module, quantizer: nn.Module, spec_transform: nn.Module, ): super().__init__() self.backbone = backbone self.head = head self.quantizer = quantizer self.spec_transform = spec_transform self.downsample_factor = math.prod(self.quantizer.downsample_factor) def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor: if self.spec_transform is not None: x = self.spec_transform(x) x = self.backbone(x) if mask is not None: x = x * mask if self.quantizer is not None: vq_result = self.quantizer(x) x = vq_result.z if mask is not None: x = x * mask x = self.head(x, template=template) if x.ndim == 2: x = x[:, None, :] if self.vq is not None: return x, vq_result return x def encode(self, audios, audio_lengths): audios = audios.float() mels = self.spec_transform(audios) mel_lengths = audio_lengths // self.spec_transform.hop_length mel_masks = sequence_mask(mel_lengths, mels.shape[2]) mel_masks_float_conv = mel_masks[:, None, :].float() mels = mels * mel_masks_float_conv # Encode encoded_features = self.backbone(mels) * mel_masks_float_conv feature_lengths = mel_lengths // self.downsample_factor return self.quantizer.encode(encoded_features), feature_lengths def decode(self, indices, feature_lengths) -> torch.Tensor: mel_masks = sequence_mask( feature_lengths * self.downsample_factor, indices.shape[2] * self.downsample_factor, ) mel_masks_float_conv = mel_masks[:, None, :].float() audio_lengths = ( feature_lengths * self.downsample_factor * self.spec_transform.hop_length ) audio_masks = sequence_mask( audio_lengths, indices.shape[2] * self.downsample_factor * self.spec_transform.hop_length, ) audio_masks_float_conv = audio_masks[:, None, :].float() z = self.quantizer.decode(indices) * mel_masks_float_conv x = self.head(z) * audio_masks_float_conv return x, audio_lengths def remove_parametrizations(self): if hasattr(self.backbone, "remove_parametrizations"): self.backbone.remove_parametrizations() if hasattr(self.head, "remove_parametrizations"): self.head.remove_parametrizations() @property def device(self): return next(self.parameters()).device