Spaces:
Running
Running
import os | |
import queue | |
import threading | |
import time | |
from contextlib import nullcontext | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import Literal, Optional, Tuple, Union | |
import click | |
import hydra | |
import numpy as np | |
import torch | |
import torch._dynamo.config | |
import torch._inductor.config | |
from loguru import logger | |
from tqdm import tqdm | |
from transformers import AutoTokenizer | |
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID | |
from fish_speech.models.text2semantic.llama import BaseModelArgs | |
from fish_speech.text import clean_text, split_text | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.triton.unique_kernel_names = True | |
if hasattr(torch._inductor.config, "fx_graph_cache"): | |
# Experimental feature to reduce compilation times, will be on by default in future | |
torch._inductor.config.fx_graph_cache = True | |
from torch.nn.attention import SDPBackend, sdpa_kernel | |
from fish_speech.models.text2semantic.llama import ( | |
BaseTransformer, | |
DualARTransformer, | |
NaiveTransformer, | |
) | |
def multinomial_sample_one_no_sync( | |
probs_sort, | |
): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs_sort).exponential_(1) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def logits_to_probs( | |
logits, | |
previous_tokens: Optional[torch.Tensor] = None, | |
temperature: torch.Tensor = 1.0, | |
top_p: torch.Tensor = 1.0, | |
repetition_penalty: torch.Tensor = 1.0, | |
) -> torch.Tensor: | |
# Apply repetition penalty | |
if previous_tokens is not None: | |
previous_tokens = previous_tokens.long() | |
score = torch.gather(logits, dim=0, index=previous_tokens) | |
score = torch.where( | |
score < 0, score * repetition_penalty, score / repetition_penalty | |
) | |
logits.scatter_(dim=0, index=previous_tokens, src=score) | |
# Apply top-p sampling | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cum_probs > top_p | |
sorted_indices_to_remove[0] = False # keep at least one option | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
dim=0, index=sorted_indices, src=sorted_indices_to_remove | |
) | |
logits = logits.masked_fill(indices_to_remove, -float("Inf")) | |
logits = logits / max(temperature, 1e-5) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def multinomial_sample_one_no_sync_agent( | |
probs_sort, | |
): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs_sort).exponential_(1) | |
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def logits_to_probs_agent( | |
logits, | |
previous_tokens: Optional[torch.Tensor] = None, | |
temperature: torch.Tensor = 1.0, | |
top_p: torch.Tensor = 1.0, | |
repetition_penalty: torch.Tensor = 1.0, | |
) -> torch.Tensor: | |
# Apply repetition penalty | |
if previous_tokens is not None: | |
previous_tokens = previous_tokens.long() | |
score = torch.gather(logits, dim=-1, index=previous_tokens) | |
score = torch.where( | |
score < 0, score * repetition_penalty, score / repetition_penalty | |
) | |
logits.scatter_(dim=-1, index=previous_tokens, src=score) | |
# Apply top-p sampling | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cum_probs > top_p | |
sorted_indices_to_remove[..., 0] = False # keep at least one option | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
dim=-1, index=sorted_indices, src=sorted_indices_to_remove | |
) | |
logits = logits.masked_fill(indices_to_remove, -float("Inf")) | |
logits = logits / max(temperature, 1e-5) | |
probs = torch.nn.functional.softmax(logits, dim=-1) | |
return probs | |
def sample( | |
logits, | |
previous_tokens: Optional[torch.Tensor] = None, | |
**sampling_kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
probs = logits_to_probs( | |
logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs | |
) | |
idx_next = multinomial_sample_one_no_sync(probs) | |
return idx_next, probs | |
def sample_agent( | |
logits, | |
previous_tokens: Optional[torch.Tensor] = None, | |
**sampling_kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
probs = logits_to_probs_agent( | |
logits=logits[:, -1], previous_tokens=previous_tokens, **sampling_kwargs | |
) | |
idx_next = multinomial_sample_one_no_sync_agent(probs) | |
return idx_next, probs | |
def decode_one_token_ar_agent( | |
model: DualARTransformer, | |
x: torch.Tensor, | |
input_pos: torch.Tensor, | |
previous_tokens: torch.Tensor = None, | |
semantic_id: int = 32003, | |
**sampling_kwargs, | |
) -> torch.Tensor: | |
# print(x, input_pos) | |
x = model.forward_generate(x, input_pos) | |
logits = x.logits # [:, -1:] | |
hidden_states = x.hidden_states # [:, -1:] | |
codebooks = [ | |
sample_agent( | |
logits, | |
previous_tokens=None, # Disable repetition penalty for the token codebook | |
**sampling_kwargs, | |
)[0] | |
] | |
# Cleanup the cache | |
for layer in model.fast_layers: | |
layer.attention.kv_cache.k_cache.fill_(0) | |
layer.attention.kv_cache.v_cache.fill_(0) | |
for codebook_idx in range(model.config.num_codebooks): | |
input_pos = torch.tensor( | |
[codebook_idx], device=hidden_states.device, dtype=torch.long | |
) | |
logits = model.forward_generate_fast(hidden_states, input_pos) | |
a = sample_agent( | |
logits, | |
previous_tokens=( | |
previous_tokens[:, codebook_idx + 1] | |
if previous_tokens is not None | |
else None | |
), | |
**sampling_kwargs, | |
)[0] | |
hidden_states = model.fast_embeddings(a) | |
codebooks.append(a) | |
codebooks = torch.stack(codebooks, dim=1) | |
codebooks[:, 1:, :] = torch.masked_fill( | |
codebooks[:, 1:, :], codebooks[:, :1, :] != semantic_id, CODEBOOK_PAD_TOKEN_ID | |
) | |
return codebooks | |
def decode_one_token_naive_agent( | |
model: NaiveTransformer, | |
x: torch.Tensor, | |
input_pos: torch.Tensor, | |
previous_tokens: torch.Tensor = None, | |
semantic_id: int = 32003, | |
**sampling_kwargs, | |
) -> torch.Tensor: | |
x = model.forward_generate(x, input_pos) | |
codebooks = [ | |
sample( | |
x.token_logits, | |
previous_tokens=None, # Disable repetition penalty for the token codebook | |
**sampling_kwargs, | |
)[0] | |
] | |
for i in range(model.config.num_codebooks): | |
codebooks.append( | |
sample_agent( | |
x.codebook_logits[:, :, i], | |
previous_tokens=( | |
previous_tokens[:, i + 1] if previous_tokens is not None else None | |
), | |
**sampling_kwargs, | |
)[0] | |
) | |
codebooks = torch.stack(codebooks, dim=1) | |
codebooks[:, 1:, :] = torch.masked_fill( | |
codebooks[:, 1:, :], codebooks[:, :1, :] != semantic_id, CODEBOOK_PAD_TOKEN_ID | |
) | |
return codebooks | |
def decode_one_token_ar( | |
model: DualARTransformer, | |
x: torch.Tensor, | |
input_pos: torch.Tensor, | |
previous_tokens: torch.Tensor = None, | |
semantic_id: int = 0, | |
**sampling_kwargs, | |
) -> torch.Tensor: | |
x = model.forward_generate(x, input_pos) | |
sampling_kwargs_main = sampling_kwargs.copy() | |
# sampling_kwargs_main["temperature"] = 0.1 | |
# sampling_kwargs_main["top_p"] = 0.1 | |
# sampling_kwargs_main["repetition_penalty"] = 1.0 | |
codebooks = [ | |
sample( | |
x.logits, | |
previous_tokens=None, # Disable repetition penalty for the token codebook | |
**sampling_kwargs_main, | |
)[0] | |
] | |
x = x.hidden_states | |
# Cleanup the cache | |
for layer in model.fast_layers: | |
layer.attention.kv_cache.k_cache.fill_(0) | |
layer.attention.kv_cache.v_cache.fill_(0) | |
for codebook_idx in range(model.config.num_codebooks): | |
input_pos = torch.tensor([codebook_idx], device=x.device, dtype=torch.long) | |
logits = model.forward_generate_fast(x, input_pos) | |
a = sample( | |
logits, | |
previous_tokens=( | |
previous_tokens[codebook_idx + 1] | |
if previous_tokens is not None | |
else None | |
), | |
**sampling_kwargs, | |
)[0] | |
x = model.fast_embeddings(a) | |
codebooks.append(a) | |
codebooks = torch.stack(codebooks, dim=0) | |
codebooks[1:, :] = torch.masked_fill( | |
codebooks[1:, :], codebooks[:1, :] != semantic_id, CODEBOOK_PAD_TOKEN_ID | |
) | |
return codebooks | |
def decode_one_token_naive( | |
model: NaiveTransformer, | |
x: torch.Tensor, | |
input_pos: torch.Tensor, | |
previous_tokens: torch.Tensor = None, | |
**sampling_kwargs, | |
) -> torch.Tensor: | |
x = model.forward_generate(x, input_pos) | |
sampling_kwargs_main = sampling_kwargs.copy() | |
sampling_kwargs_main["temperature"] = 0.1 | |
sampling_kwargs_main["top_p"] = 0.1 | |
sampling_kwargs_main["repetition_penalty"] = 1.0 | |
codebooks = [ | |
sample( | |
x.logits, | |
previous_tokens=None, # Disable repetition penalty for the token codebook | |
**sampling_kwargs_main, | |
)[0] | |
] | |
for i in range(model.config.num_codebooks): | |
codebooks.append( | |
sample( | |
x.codebook_logits[:, :, i], | |
previous_tokens=( | |
previous_tokens[i + 1] if previous_tokens is not None else None | |
), | |
**sampling_kwargs, | |
)[0] | |
) | |
return torch.stack(codebooks, dim=0) | |
def decode_n_tokens( | |
model: NaiveTransformer, | |
cur_token: torch.Tensor, | |
input_pos: torch.Tensor, | |
num_new_tokens: int, | |
im_end_id: int = 4, | |
decode_one_token=decode_one_token_naive, | |
semantic_id: int = 0, | |
**sampling_kwargs, | |
): | |
previous_tokens = torch.zeros( | |
(model.config.num_codebooks + 1, model.config.max_seq_len), | |
dtype=torch.int, | |
device=cur_token.device, | |
) | |
for i in tqdm(range(num_new_tokens)): | |
# We need to get windowed repeat penalty | |
win_size = 16 | |
if i < win_size: | |
window = previous_tokens[:, :win_size] | |
else: | |
window = previous_tokens[:, i - win_size : i] | |
with ( | |
torch.backends.cuda.sdp_kernel( | |
enable_flash=False, enable_mem_efficient=False, enable_math=True | |
) | |
if torch.cuda.is_available() | |
else nullcontext() | |
): # Actually better for Inductor to codegen attention here | |
next_token = decode_one_token( | |
model=model, | |
x=cur_token, | |
input_pos=input_pos, | |
previous_tokens=window, | |
semantic_id=semantic_id, | |
**sampling_kwargs, | |
) | |
input_pos += 1 | |
cur_token = next_token.view(1, model.config.num_codebooks + 1, -1) | |
previous_tokens[:, i : i + 1] = next_token.view( | |
model.config.num_codebooks + 1, -1 | |
) | |
if cur_token[0, 0, -1] == im_end_id: | |
break | |
return previous_tokens[:, : i + 1] | |
def generate( | |
*, | |
model: NaiveTransformer, | |
prompt: torch.Tensor, | |
max_new_tokens: int, | |
im_end_id: int = 4, | |
decode_one_token=decode_one_token_naive, | |
**sampling_kwargs, | |
) -> torch.Tensor: | |
""" | |
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. | |
""" | |
# create an empty tensor of the expected final shape and fill in the current tokens | |
T = prompt.size(1) | |
semantic_id = model.tokenizer.convert_tokens_to_ids("<|semantic|>") | |
if max_new_tokens: | |
if T + max_new_tokens > model.config.max_seq_len: | |
max_new_tokens = model.config.max_seq_len - T | |
logger.info(f"Truncating max_new_tokens to {max_new_tokens}") | |
T_new = T + max_new_tokens | |
else: | |
T_new = model.config.max_seq_len | |
max_new_tokens = T_new - T | |
device, dtype = prompt.device, prompt.dtype | |
codebook_dim = 1 + model.config.num_codebooks | |
# create an empty tensor of the expected final shape and fill in the current tokens | |
empty = torch.empty( | |
(codebook_dim, model.config.max_seq_len), dtype=dtype, device=device | |
) | |
empty[:, :T] = prompt | |
seq = empty | |
input_pos = torch.arange(0, T, device=device) | |
# Use non-accelerated version for now, to avoid compilation overhead | |
prefill_decode = ( | |
decode_one_token_naive | |
if isinstance(model, NaiveTransformer) | |
else decode_one_token_ar | |
) | |
next_token = prefill_decode( | |
model, | |
prompt.view(1, codebook_dim, -1), | |
input_pos, | |
semantic_id=semantic_id, | |
**sampling_kwargs, | |
) | |
seq[:, T : T + 1] = next_token | |
input_pos = torch.tensor([T], device=device, dtype=torch.int) | |
x = decode_n_tokens( | |
model, | |
next_token.view(1, codebook_dim, -1), | |
input_pos, | |
max_new_tokens - 1, | |
im_end_id=im_end_id, | |
decode_one_token=decode_one_token, | |
semantic_id=semantic_id, | |
**sampling_kwargs, | |
) | |
# x = torch.cat(generated_tokens, dim=1) | |
seq = seq[:, : T + 1 + x.size(1)] | |
seq[:, T + 1 :] = x | |
return seq | |
def decode_n_tokens_agent( | |
model: NaiveTransformer, | |
cur_token: torch.Tensor, | |
input_pos: torch.Tensor, | |
num_new_tokens: int, | |
im_end_id: int = 4, | |
semantic_id: int = 32003, | |
decode_one_token=decode_one_token_naive_agent, | |
early_stop_threshold: float = 0.6, | |
**sampling_kwargs, | |
): | |
batch_size = cur_token.size(0) | |
previous_tokens = torch.zeros( | |
(batch_size, model.config.num_codebooks + 1, model.config.max_seq_len), | |
dtype=torch.int, | |
device=cur_token.device, | |
) | |
finished = torch.zeros(batch_size, dtype=torch.bool, device=cur_token.device) | |
finished = finished | (cur_token[:, 0, -1] == im_end_id) | |
start_time = time.time() | |
for i in tqdm(range(num_new_tokens), desc="Decoding: ", total=num_new_tokens): | |
# We need to get windowed repeat penalty | |
win_size = 16 | |
if i < win_size: | |
window = previous_tokens[:, :, :win_size] | |
else: | |
window = previous_tokens[:, :, i - win_size : i] | |
with sdpa_kernel( | |
SDPBackend.MATH | |
): # Actually better for Inductor to codegen attention here | |
next_token = decode_one_token( | |
model=model, | |
x=cur_token, | |
input_pos=input_pos, | |
previous_tokens=window, | |
semantic_id=semantic_id, | |
**sampling_kwargs, | |
) | |
input_pos += 1 | |
cur_token = next_token.view(batch_size, model.config.num_codebooks + 1, -1) | |
previous_tokens[:, :, i : i + 1] = next_token.view( | |
batch_size, model.config.num_codebooks + 1, -1 | |
) | |
yield cur_token.cpu() | |
finished = finished | (cur_token[:, 0, -1] == im_end_id) | |
if finished.all() or ( | |
0 < early_stop_threshold < 1 | |
and finished.sum() >= round(batch_size * early_stop_threshold) | |
): | |
break | |
total_time = time.time() - start_time | |
generated_tokens = i + 1 | |
tokens_per_second = (generated_tokens / total_time) * batch_size | |
logger.info( | |
f"Decoded {generated_tokens} x {batch_size} tokens in {total_time:.2f}s ({tokens_per_second:.2f} tokens/s)" | |
) | |
def generate_agent( | |
*, | |
model: BaseTransformer, | |
prompt: torch.Tensor, | |
max_new_tokens: int, | |
im_end_id: int = 4, | |
semantic_id: int = 32003, | |
decode_one_token=decode_one_token_naive_agent, | |
num_samples: int = 1, | |
early_stop_threshold: float = 0.6, | |
**sampling_kwargs, | |
): | |
""" | |
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. | |
""" | |
# create an empty tensor of the expected final shape and fill in the current tokens | |
T = prompt.size(1) | |
prompt = prompt[None].repeat(num_samples, 1, 1) | |
if T >= model.config.max_seq_len: | |
raise ValueError( | |
f"Input sequence length {T} exceeds max_seq_len {model.config.max_seq_len}" | |
) | |
if max_new_tokens: | |
if T + max_new_tokens > model.config.max_seq_len: | |
max_new_tokens = model.config.max_seq_len - T | |
logger.info(f"Truncating max_new_tokens to {max_new_tokens}") | |
T_new = T + max_new_tokens | |
else: | |
T_new = model.config.max_seq_len | |
max_new_tokens = T_new - T | |
device, dtype = prompt.device, prompt.dtype | |
codebook_dim = 1 + model.config.num_codebooks | |
input_pos = torch.arange(0, T, device=device) | |
# Use non-accelerated version for now, to avoid compilation overhead | |
prefill_decode = ( | |
decode_one_token_naive_agent | |
if isinstance(model, NaiveTransformer) | |
else decode_one_token_ar_agent | |
) | |
next_token = prefill_decode( | |
model, | |
prompt, | |
input_pos, | |
semantic_id=semantic_id, | |
**sampling_kwargs, | |
).view(num_samples, codebook_dim, -1) | |
yield next_token.cpu() | |
input_pos = torch.tensor([T], device=device, dtype=torch.int) | |
yield from decode_n_tokens_agent( | |
model, | |
next_token, | |
input_pos, | |
max_new_tokens - 1, | |
im_end_id=im_end_id, | |
semantic_id=semantic_id, | |
decode_one_token=decode_one_token, | |
early_stop_threshold=early_stop_threshold, | |
**sampling_kwargs, | |
) | |
def encode_tokens( | |
tokenizer, | |
string, | |
device="cuda", | |
prompt_tokens=None, | |
num_codebooks=4, | |
): | |
string = clean_text(string) | |
string = f"<|im_start|>user\nSpeak: {string}<|im_end|><|im_start|>assistant\n" | |
new_tokens = tokenizer.encode( | |
string, | |
add_special_tokens=False, | |
max_length=10**6, | |
truncation=False, | |
) | |
tokens = torch.tensor([new_tokens], dtype=torch.int, device=device) | |
# Codebooks | |
zeros = ( | |
torch.ones((num_codebooks, tokens.size(1)), dtype=torch.int, device=device) | |
* CODEBOOK_PAD_TOKEN_ID | |
) | |
prompt = torch.cat((tokens, zeros), dim=0) | |
if prompt_tokens is None: | |
return prompt | |
# Get prompt tokens | |
if prompt_tokens.ndim == 3: | |
assert ( | |
prompt_tokens.shape[0] == 1 | |
), f"3 dim prompt tokens should have shape (1, num_codebooks, seq_len)" | |
prompt_tokens = prompt_tokens[0] | |
assert prompt_tokens.ndim == 2 | |
data = prompt_tokens + 1 | |
if prompt_tokens.shape[0] > num_codebooks: | |
logger.warning( | |
f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks" | |
) | |
data = data[:num_codebooks] | |
# Add pad token for each codebook | |
data = torch.cat( | |
(data, torch.zeros((data.size(0), 1), dtype=torch.int, device=device)), | |
dim=1, | |
) | |
# Since 1.0, we use <|semantic|> | |
s0_token_id = tokenizer.convert_tokens_to_ids("<|semantic|>") | |
end_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>") | |
main_token_ids = ( | |
torch.ones((1, data.size(1)), dtype=torch.int, device=device) * s0_token_id | |
) | |
main_token_ids[0, -1] = end_token_id | |
data = torch.cat((main_token_ids, data), dim=0) | |
prompt = torch.cat((prompt, data), dim=1) | |
return prompt | |
def load_model(checkpoint_path, device, precision, compile=False, is_agent=False): | |
model: Union[NaiveTransformer, DualARTransformer] = BaseTransformer.from_pretrained( | |
checkpoint_path, load_weights=True | |
) | |
model = model.to(device=device, dtype=precision) | |
logger.info(f"Restored model from checkpoint") | |
if isinstance(model, DualARTransformer): | |
decode_one_token = ( | |
decode_one_token_ar_agent if is_agent else decode_one_token_ar | |
) | |
logger.info("Using DualARTransformer") | |
else: | |
decode_one_token = ( | |
decode_one_token_naive_agent if is_agent else decode_one_token_naive | |
) | |
logger.info("Using NaiveTransformer") | |
if compile: | |
logger.info("Compiling function...") | |
decode_one_token = torch.compile( | |
decode_one_token, | |
fullgraph=True, | |
backend="inductor" if torch.cuda.is_available() else "aot_eager", | |
mode="reduce-overhead" if torch.cuda.is_available() else None, | |
) | |
return model.eval(), decode_one_token | |
class GenerateResponse: | |
action: Literal["sample", "next"] | |
codes: Optional[torch.Tensor] = None | |
text: Optional[str] = None | |
def generate_long( | |
*, | |
model, | |
device: str | torch.device, | |
decode_one_token: callable, | |
text: str, | |
num_samples: int = 1, | |
max_new_tokens: int = 0, | |
top_p: int = 0.7, | |
repetition_penalty: float = 1.5, | |
temperature: float = 0.7, | |
compile: bool = False, | |
iterative_prompt: bool = True, | |
max_length: int = 2048, | |
chunk_length: int = 150, | |
prompt_text: Optional[str | list[str]] = None, | |
prompt_tokens: Optional[torch.Tensor | list[torch.Tensor]] = None, | |
): | |
assert 0 < top_p <= 1, "top_p must be in (0, 1]" | |
assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)" | |
assert 0 < temperature < 2, "temperature must be in (0, 2)" | |
use_prompt = prompt_text is not None and prompt_tokens is not None | |
if use_prompt and isinstance(prompt_text, str): | |
prompt_text = [prompt_text] | |
prompt_tokens = [prompt_tokens] | |
assert use_prompt is False or len(prompt_text) == len( | |
prompt_tokens | |
), "Prompt text and tokens must have the same length" | |
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
tokenizer = model.tokenizer | |
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>") | |
encoded = [] | |
texts = split_text(text, chunk_length) if iterative_prompt else [text] | |
encoded_prompts = [] | |
if use_prompt: | |
for idx, (t, c) in enumerate(zip(prompt_text, prompt_tokens)): | |
encoded_prompts.append( | |
encode_tokens( | |
tokenizer, | |
string=t, | |
device=device, | |
prompt_tokens=c, | |
num_codebooks=model.config.num_codebooks, | |
) | |
) | |
for idx, text in enumerate(texts): | |
encoded.append( | |
encode_tokens( | |
tokenizer, | |
string=text, | |
device=device, | |
num_codebooks=model.config.num_codebooks, | |
) | |
) | |
logger.info(f"Encoded text: {text}") | |
# Move temperature, top_p, repetition_penalty to device | |
# This is important so that changing params doesn't trigger recompile | |
temperature = torch.tensor(temperature, device=device, dtype=torch.float) | |
top_p = torch.tensor(top_p, device=device, dtype=torch.float) | |
repetition_penalty = torch.tensor( | |
repetition_penalty, device=device, dtype=torch.float | |
) | |
for sample_idx in range(num_samples): | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
global_encoded = [] | |
seg_idx = 0 | |
while seg_idx < len(encoded): | |
logger.info( | |
f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}" | |
) | |
seg = encoded[seg_idx] | |
global_encoded.append(seg) | |
lengths = reversed([seg.size(1) for seg in global_encoded]) | |
# Pick last 2000 tokens | |
count = 0 | |
for i, length in enumerate(lengths): | |
count += length | |
if count + length > max_length - 1024 - sum( | |
t.shape[1] for t in encoded_prompts | |
): | |
break | |
if i != 0 and i % 2 == 0: | |
i -= 1 | |
# Rotate the list, always make sure first segment is included to avoid drift | |
if i < len(global_encoded) - 2: | |
partial_encoded = global_encoded[:2] + global_encoded[-i:] | |
else: | |
partial_encoded = global_encoded | |
if use_prompt: | |
partial_encoded = encoded_prompts + partial_encoded | |
cat_encoded = torch.cat(partial_encoded, dim=1) | |
prompt_length = cat_encoded.size(1) | |
t0 = time.perf_counter() | |
y = generate( | |
model=model, | |
prompt=cat_encoded, | |
max_new_tokens=max_new_tokens, | |
im_end_id=im_end_id, | |
decode_one_token=decode_one_token, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
) | |
if sample_idx == 0 and seg_idx == 0 and compile: | |
logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
t = time.perf_counter() - t0 | |
tokens_generated = y.size(1) - prompt_length | |
tokens_sec = tokens_generated / t | |
logger.info( | |
f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec" | |
) | |
logger.info( | |
f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s" | |
) | |
if torch.cuda.is_available(): | |
logger.info( | |
f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB" | |
) | |
# Put the generated tokens | |
# since there is <im_end> and <eos> tokens, we remove last 2 tokens | |
codes = y[1:, prompt_length:-1].clone() | |
codes = codes - 1 | |
assert (codes >= 0).all(), f"Negative code found" | |
decoded = y[:, prompt_length:-1].clone() | |
# But for global encoding, we should keep the <im_end> token | |
global_encoded.append(decoded) | |
assert (codes >= 0).all(), f"Negative code found: {codes}" | |
yield GenerateResponse(action="sample", codes=codes, text=texts[seg_idx]) | |
seg_idx += 1 | |
# This indicates the end of the current sample | |
yield GenerateResponse(action="next") | |
class WrappedGenerateResponse: | |
status: Literal["success", "error"] | |
response: Optional[GenerateResponse | Exception] = None | |
class GenerateRequest: | |
request: dict | |
response_queue: queue.Queue | |
def launch_thread_safe_queue( | |
checkpoint_path, | |
device, | |
precision, | |
compile: bool = False, | |
): | |
input_queue = queue.Queue() | |
init_event = threading.Event() | |
def worker(): | |
model, decode_one_token = load_model( | |
checkpoint_path, device, precision, compile=compile | |
) | |
with torch.device(device): | |
model.setup_caches( | |
max_batch_size=1, | |
max_seq_len=model.config.max_seq_len, | |
dtype=next(model.parameters()).dtype, | |
) | |
init_event.set() | |
while True: | |
item: GenerateRequest | None = input_queue.get() | |
if item is None: | |
break | |
kwargs = item.request | |
response_queue = item.response_queue | |
try: | |
for chunk in generate_long( | |
model=model, decode_one_token=decode_one_token, **kwargs | |
): | |
response_queue.put( | |
WrappedGenerateResponse(status="success", response=chunk) | |
) | |
except Exception as e: | |
response_queue.put(WrappedGenerateResponse(status="error", response=e)) | |
threading.Thread(target=worker, daemon=True).start() | |
init_event.wait() | |
return input_queue | |
def launch_thread_safe_queue_agent( | |
checkpoint_path, | |
device, | |
precision, | |
compile: bool = False, | |
): | |
input_queue = queue.Queue() | |
init_event = threading.Event() | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) | |
config = BaseModelArgs.from_pretrained(checkpoint_path) | |
def worker(): | |
model, decode_one_token = load_model( | |
checkpoint_path, device, precision, compile=compile, is_agent=True | |
) | |
with torch.device(device): | |
model.setup_caches( | |
max_batch_size=1, | |
max_seq_len=model.config.max_seq_len, | |
dtype=next(model.parameters()).dtype, | |
) | |
init_event.set() | |
while True: | |
item: GenerateRequest | None = input_queue.get() | |
if item is None: | |
break | |
kwargs = item.request | |
response_queue = item.response_queue | |
try: | |
for token in generate_agent( | |
model=model, | |
decode_one_token=decode_one_token, | |
**kwargs, | |
): | |
response_queue.put(token) | |
response_queue.put("stop") | |
except Exception as e: | |
import traceback | |
logger.exception(f"Error in worker: {traceback.format_exc()}") | |
response_queue.put("error") | |
threading.Thread(target=worker, daemon=True).start() | |
init_event.wait() | |
return input_queue, tokenizer, config | |
def main( | |
text: str, | |
prompt_text: Optional[list[str]], | |
prompt_tokens: Optional[list[Path]], | |
num_samples: int, | |
max_new_tokens: int, | |
top_p: int, | |
repetition_penalty: float, | |
temperature: float, | |
checkpoint_path: Path, | |
device: str, | |
compile: bool, | |
seed: int, | |
half: bool, | |
iterative_prompt: bool, | |
chunk_length: int, | |
) -> None: | |
precision = torch.half if half else torch.bfloat16 | |
if prompt_text is not None and len(prompt_text) != len(prompt_tokens): | |
raise ValueError( | |
f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same" | |
) | |
logger.info("Loading model ...") | |
t0 = time.time() | |
model, decode_one_token = load_model( | |
checkpoint_path, device, precision, compile=compile | |
) | |
with torch.device(device): | |
model.setup_caches( | |
max_batch_size=1, | |
max_seq_len=model.config.max_seq_len, | |
dtype=next(model.parameters()).dtype, | |
) | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
logger.info(f"Time to load model: {time.time() - t0:.02f} seconds") | |
if prompt_tokens is not None: | |
prompt_tokens = [torch.from_numpy(np.load(p)).to(device) for p in prompt_tokens] | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
generator = generate_long( | |
model=model, | |
device=device, | |
decode_one_token=decode_one_token, | |
text=text, | |
num_samples=num_samples, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
temperature=temperature, | |
compile=compile, | |
iterative_prompt=iterative_prompt, | |
chunk_length=chunk_length, | |
prompt_text=prompt_text, | |
prompt_tokens=prompt_tokens, | |
) | |
idx = 0 | |
codes = [] | |
for response in generator: | |
if response.action == "sample": | |
codes.append(response.codes) | |
logger.info(f"Sampled text: {response.text}") | |
elif response.action == "next": | |
if codes: | |
np.save(f"codes_{idx}.npy", torch.cat(codes, dim=1).cpu().numpy()) | |
logger.info(f"Saved codes to codes_{idx}.npy") | |
logger.info(f"Next sample") | |
codes = [] | |
idx += 1 | |
else: | |
logger.error(f"Error: {response}") | |
if __name__ == "__main__": | |
main() | |