Spaces:
Running
Running
File size: 19,985 Bytes
4f6613a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
import math
from functools import partial
from math import prod
from typing import Callable
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
from torch.utils.checkpoint import checkpoint
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv1D") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def unpad1d(x: torch.Tensor, paddings: tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left:end]
def get_extra_padding_for_conv1d(
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0
) -> int:
"""See `pad_for_conv1d`."""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad1d(
x: torch.Tensor,
paddings: tuple[int, int],
mode: str = "zeros",
value: float = 0.0,
):
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
If this is the case, we insert extra 0 padding to the right
before the reflection happen.
"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == "reflect":
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
class FishConvNet(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, dilation=1, stride=1, groups=1
):
super(FishConvNet, self).__init__()
self.conv = nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
dilation=dilation,
groups=groups,
)
self.stride = stride
self.kernel_size = (kernel_size - 1) * dilation + 1
self.dilation = dilation
def forward(self, x):
pad = self.kernel_size - self.stride
extra_padding = get_extra_padding_for_conv1d(
x, self.kernel_size, self.stride, pad
)
x = pad1d(x, (pad, extra_padding), mode="constant", value=0)
return self.conv(x).contiguous()
def weight_norm(self, name="weight", dim=0):
self.conv = weight_norm(self.conv, name=name, dim=dim)
return self
def remove_parametrizations(self, name="weight"):
self.conv = remove_parametrizations(self.conv, name)
return self
class FishTransConvNet(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation=1, stride=1):
super(FishTransConvNet, self).__init__()
self.conv = nn.ConvTranspose1d(
in_channels, out_channels, kernel_size, stride=stride, dilation=dilation
)
self.stride = stride
self.kernel_size = kernel_size
def forward(self, x):
x = self.conv(x)
pad = self.kernel_size - self.stride
padding_right = math.ceil(pad)
padding_left = pad - padding_right
x = unpad1d(x, (padding_left, padding_right))
return x.contiguous()
def weight_norm(self, name="weight", dim=0):
self.conv = weight_norm(self.conv, name=name, dim=dim)
return self
def remove_parametrizations(self, name="weight"):
self.conv = remove_parametrizations(self.conv, name)
return self
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList(
[
FishConvNet(
channels, channels, kernel_size, stride=1, dilation=dilation[0]
).weight_norm(),
FishConvNet(
channels, channels, kernel_size, stride=1, dilation=dilation[1]
).weight_norm(),
FishConvNet(
channels, channels, kernel_size, stride=1, dilation=dilation[2]
).weight_norm(),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
FishConvNet(
channels, channels, kernel_size, stride=1, dilation=dilation[0]
).weight_norm(),
FishConvNet(
channels, channels, kernel_size, stride=1, dilation=dilation[1]
).weight_norm(),
FishConvNet(
channels, channels, kernel_size, stride=1, dilation=dilation[2]
).weight_norm(),
]
)
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.silu(x)
xt = c1(xt)
xt = F.silu(xt)
xt = c2(xt)
x = xt + x
return x
def remove_parametrizations(self):
for conv in self.convs1:
conv.remove_parametrizations()
for conv in self.convs2:
conv.remove_parametrizations()
class ParallelBlock(nn.Module):
def __init__(
self,
channels: int,
kernel_sizes: tuple[int] = (3, 7, 11),
dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
):
super().__init__()
assert len(kernel_sizes) == len(dilation_sizes)
self.blocks = nn.ModuleList()
for k, d in zip(kernel_sizes, dilation_sizes):
self.blocks.append(ResBlock1(channels, k, d))
def forward(self, x):
return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0)
def remove_parametrizations(self):
for block in self.blocks:
block.remove_parametrizations()
class HiFiGANGenerator(nn.Module):
def __init__(
self,
*,
hop_length: int = 512,
upsample_rates: tuple[int] = (8, 8, 2, 2, 2),
upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2),
resblock_kernel_sizes: tuple[int] = (3, 7, 11),
resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 128,
upsample_initial_channel: int = 512,
pre_conv_kernel_size: int = 7,
post_conv_kernel_size: int = 7,
post_activation: Callable = partial(nn.SiLU, inplace=True),
):
super().__init__()
assert (
prod(upsample_rates) == hop_length
), f"hop_length must be {prod(upsample_rates)}"
self.conv_pre = FishConvNet(
num_mels,
upsample_initial_channel,
pre_conv_kernel_size,
stride=1,
).weight_norm()
self.num_upsamples = len(upsample_rates)
self.num_kernels = len(resblock_kernel_sizes)
self.noise_convs = nn.ModuleList()
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
FishTransConvNet(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
stride=u,
).weight_norm()
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
self.resblocks.append(
ParallelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes)
)
self.activation_post = post_activation()
self.conv_post = FishConvNet(
ch, 1, post_conv_kernel_size, stride=1
).weight_norm()
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def forward(self, x):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.silu(x, inplace=True)
x = self.ups[i](x)
if self.training and self.checkpointing:
x = checkpoint(
self.resblocks[i],
x,
use_reentrant=False,
)
else:
x = self.resblocks[i](x)
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_parametrizations(self):
for up in self.ups:
up.remove_parametrizations()
for block in self.resblocks:
block.remove_parametrizations()
self.conv_pre.remove_parametrizations()
self.conv_post.remove_parametrizations()
# DropPath copied from timm library
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
""" # noqa: E501
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"
class LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
""" # noqa: E501
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, self.weight, self.bias, self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None] * x + self.bias[:, None]
return x
# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
kernel_size (int): Kernel size for depthwise conv. Default: 7.
dilation (int): Dilation for depthwise conv. Default: 1.
""" # noqa: E501
def __init__(
self,
dim: int,
drop_path: float = 0.0,
layer_scale_init_value: float = 1e-6,
mlp_ratio: float = 4.0,
kernel_size: int = 7,
dilation: int = 1,
):
super().__init__()
self.dwconv = FishConvNet(
dim,
dim,
kernel_size=kernel_size,
# padding=int(dilation * (kernel_size - 1) / 2),
groups=dim,
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, int(mlp_ratio * dim)
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim)
self.gamma = (
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x, apply_residual: bool = True):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
x = self.drop_path(x)
if apply_residual:
x = input + x
return x
class ConvNeXtEncoder(nn.Module):
def __init__(
self,
input_channels: int = 3,
depths: list[int] = [3, 3, 9, 3],
dims: list[int] = [96, 192, 384, 768],
drop_path_rate: float = 0.0,
layer_scale_init_value: float = 1e-6,
kernel_size: int = 7,
):
super().__init__()
assert len(depths) == len(dims)
self.downsample_layers = nn.ModuleList()
stem = nn.Sequential(
FishConvNet(
input_channels,
dims[0],
kernel_size=7,
# padding=3,
# padding_mode="replicate",
# padding_mode="zeros",
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.downsample_layers.append(stem)
for i in range(len(depths) - 1):
mid_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv1d(dims[i], dims[i + 1], kernel_size=1),
)
self.downsample_layers.append(mid_layer)
self.stages = nn.ModuleList()
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(len(depths)):
stage = nn.Sequential(
*[
ConvNeXtBlock(
dim=dims[i],
drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value,
kernel_size=kernel_size,
)
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
for i in range(len(self.downsample_layers)):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
return self.norm(x)
class FireflyArchitecture(nn.Module):
def __init__(
self,
backbone: nn.Module,
head: nn.Module,
quantizer: nn.Module,
spec_transform: nn.Module,
):
super().__init__()
self.backbone = backbone
self.head = head
self.quantizer = quantizer
self.spec_transform = spec_transform
self.downsample_factor = math.prod(self.quantizer.downsample_factor)
def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor:
if self.spec_transform is not None:
x = self.spec_transform(x)
x = self.backbone(x)
if mask is not None:
x = x * mask
if self.quantizer is not None:
vq_result = self.quantizer(x)
x = vq_result.z
if mask is not None:
x = x * mask
x = self.head(x, template=template)
if x.ndim == 2:
x = x[:, None, :]
if self.vq is not None:
return x, vq_result
return x
def encode(self, audios, audio_lengths):
audios = audios.float()
mels = self.spec_transform(audios)
mel_lengths = audio_lengths // self.spec_transform.hop_length
mel_masks = sequence_mask(mel_lengths, mels.shape[2])
mel_masks_float_conv = mel_masks[:, None, :].float()
mels = mels * mel_masks_float_conv
# Encode
encoded_features = self.backbone(mels) * mel_masks_float_conv
feature_lengths = mel_lengths // self.downsample_factor
return self.quantizer.encode(encoded_features), feature_lengths
def decode(self, indices, feature_lengths) -> torch.Tensor:
mel_masks = sequence_mask(
feature_lengths * self.downsample_factor,
indices.shape[2] * self.downsample_factor,
)
mel_masks_float_conv = mel_masks[:, None, :].float()
audio_lengths = (
feature_lengths * self.downsample_factor * self.spec_transform.hop_length
)
audio_masks = sequence_mask(
audio_lengths,
indices.shape[2] * self.downsample_factor * self.spec_transform.hop_length,
)
audio_masks_float_conv = audio_masks[:, None, :].float()
z = self.quantizer.decode(indices) * mel_masks_float_conv
x = self.head(z) * audio_masks_float_conv
return x, audio_lengths
def remove_parametrizations(self):
if hasattr(self.backbone, "remove_parametrizations"):
self.backbone.remove_parametrizations()
if hasattr(self.head, "remove_parametrizations"):
self.head.remove_parametrizations()
@property
def device(self):
return next(self.parameters()).device
|