DeadfoxX commited on
Commit
9c673eb
1 Parent(s): 204945f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +147 -142
app.py CHANGED
@@ -1,149 +1,154 @@
 
 
 
 
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- import gradio as gr
4
- import sys
5
- import random
6
- import paddlehub as hub
7
-
8
- language_translation_model = hub.Module(directory=f'./baidu_translate')
9
- def getTextTrans(text, source='zh', target='en'):
10
- try:
11
- text_translation = language_translation_model.translate(text, source, target)
12
- return text_translation
13
- except Exception as e:
14
- return text
15
-
16
-
17
- model_ids = {
18
- "models/DeadfoxX/Souleater_Diffusion":"sd-v1-0",
19
-
20
- }
21
- tab_actions = []
22
- tab_titles = []
23
- for model_id in model_ids.keys():
24
- print(model_id, model_ids[model_id])
25
- try:
26
- tab = gr.Interface.load(model_id)
27
- tab_actions.append(tab)
28
- tab_titles.append(model_ids[model_id])
29
- except:
30
- pass
31
-
32
- def infer(prompt):
33
- prompt = getTextTrans(prompt, source='zh', target='en') + f',{random.randint(0,sys.maxsize)}'
34
- return prompt
35
-
36
- start_work = """async() => {
37
- function isMobile() {
38
- try {
39
- document.createEvent("TouchEvent"); return true;
40
- } catch(e) {
41
- return false;
42
- }
43
- }
44
- function getClientHeight()
45
- {
46
- var clientHeight=0;
47
- if(document.body.clientHeight&&document.documentElement.clientHeight) {
48
- var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
49
- } else {
50
- var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
51
- }
52
- return clientHeight;
53
- }
54
-
55
- function setNativeValue(element, value) {
56
- const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
57
- const prototype = Object.getPrototypeOf(element);
58
- const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
59
-
60
- if (valueSetter && valueSetter !== prototypeValueSetter) {
61
- prototypeValueSetter.call(element, value);
62
- } else {
63
- valueSetter.call(element, value);
64
- }
65
- }
66
- var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
67
- if (!gradioEl) {
68
- gradioEl = document.querySelector('body > gradio-app');
69
- }
70
 
71
- if (typeof window['gradioEl'] === 'undefined') {
72
- window['gradioEl'] = gradioEl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- tabitems = window['gradioEl'].querySelectorAll('.tabitem');
75
- for (var i = 0; i < tabitems.length; i++) {
76
- tabitems[i].childNodes[0].children[0].style.display='none';
77
- tabitems[i].childNodes[0].children[1].children[0].style.display='none';
78
- tabitems[i].childNodes[0].children[1].children[1].children[0].children[1].style.display="none";
79
- }
80
- tab_demo = window['gradioEl'].querySelectorAll('#tab_demo')[0];
81
- tab_demo.style.display = "block";
82
- tab_demo.setAttribute('style', 'height: 100%;');
83
- const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
84
- const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
85
-
86
- page1.style.display = "none";
87
- page2.style.display = "block";
88
- window['prevPrompt'] = '';
89
- window['doCheckPrompt'] = 0;
90
- window['checkPrompt'] = function checkPrompt() {
91
- try {
92
- texts = window['gradioEl'].querySelectorAll('textarea');
93
- text0 = texts[0];
94
- text1 = texts[1];
95
- if (window['doCheckPrompt'] == 0 && window['prevPrompt'] !== text1.value) {
96
- window['doCheckPrompt'] = 1;
97
- window['prevPrompt'] = text1.value;
98
- for (var i = 2; i < texts.length; i++) {
99
- setNativeValue(texts[i], text1.value);
100
- texts[i].dispatchEvent(new Event('input', { bubbles: true }));
101
- }
102
- setTimeout(function() {
103
- //text1 = window['gradioEl'].querySelectorAll('textarea')[1];
104
-
105
- btns = window['gradioEl'].querySelectorAll('button');
106
- for (var i = 0; i < btns.length; i++) {
107
- if (btns[i].innerText == 'Submit') {
108
- //btns[i].focus();
109
- btns[i].click();
110
- }
111
- }
112
- window['doCheckPrompt'] = 0;
113
- }, 10);
114
- }
115
- } catch(e) {
116
- }
117
- }
118
- window['checkPrompt_interval'] = window.setInterval("window.checkPrompt()", 100);
119
- }
120
-
121
- return false;
122
- }"""
123
-
124
- with gr.Blocks(title='Text to Image') as demo:
125
- with gr.Group(elem_id="page_1", visible=True) as page_1:
126
- with gr.Box():
127
- with gr.Row():
128
- start_button = gr.Button("Let's GO!", elem_id="start-btn", visible=True)
129
- start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
130
-
131
- with gr.Group(elem_id="page_2", visible=False) as page_2:
132
- with gr.Row(elem_id="prompt_row"):
133
- prompt_input0 = gr.Textbox(lines=4, label="prompt")
134
- prompt_input1 = gr.Textbox(lines=4, label="prompt", visible=True)
135
- with gr.Row():
136
- submit_btn = gr.Button(value = "submit",elem_id="erase-btn").style(
137
- margin=True,
138
- rounded=(True, True, True, True),
139
- )
140
- with gr.Row(elem_id='tab_demo', visible=True).style(height=5):
141
- tab_demo = gr.TabbedInterface(tab_actions, tab_titles)
142
-
143
- submit_btn.click(fn=infer, inputs=[prompt_input0], outputs=[prompt_input1])
144
-
145
- if __name__ == "__main__":
146
- demo.launch()
147
 
 
 
 
 
148
 
 
 
 
 
 
 
149
 
 
 
 
1
+ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
 
6
+ model_id = 'Souleater_Diffusion/souleater-diffusion.ckpt'
7
+ prefix = ''
8
+
9
+ scheduler = DPMSolverMultistepScheduler(
10
+ beta_start=0.00085,
11
+ beta_end=0.012,
12
+ beta_schedule="scaled_linear",
13
+ num_train_timesteps=1000,
14
+ trained_betas=None,
15
+ predict_epsilon=True,
16
+ thresholding=True,
17
+ algorithm_type="dpmsolver++",
18
+ solver_type="midpoint",
19
+ lower_order_final=True,
20
+ )
21
 
22
+ pipe = StableDiffusionPipeline.from_pretrained(
23
+ model_id,
24
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
25
+ scheduler=scheduler)
26
+
27
+ pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
28
+ model_id,
29
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
30
+ scheduler=scheduler)
31
+
32
+ if torch.cuda.is_available():
33
+ pipe = pipe.to("cuda")
34
+ pipe_i2i = pipe_i2i.to("cuda")
35
+
36
+ def error_str(error, title="Error"):
37
+ return f"""#### {title}
38
+ {error}""" if error else ""
39
+
40
+ def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=True):
41
+
42
+ generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
43
+ prompt = f"{prefix} {prompt}" if auto_prefix else prompt
44
+
45
+ try:
46
+ if img is not None:
47
+ return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
48
+ else:
49
+ return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
50
+ except Exception as e:
51
+ return None, error_str(e)
52
+
53
+ def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
54
+
55
+ result = pipe(
56
+ prompt,
57
+ negative_prompt = neg_prompt,
58
+ num_inference_steps = int(steps),
59
+ guidance_scale = guidance,
60
+ width = width,
61
+ height = height,
62
+ generator = generator)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ return replace_nsfw_images(result)
65
+
66
+ def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
67
+
68
+ ratio = min(height / img.height, width / img.width)
69
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
70
+ result = pipe_i2i(
71
+ prompt,
72
+ negative_prompt = neg_prompt,
73
+ init_image = img,
74
+ num_inference_steps = int(steps),
75
+ strength = strength,
76
+ guidance_scale = guidance,
77
+ width = width,
78
+ height = height,
79
+ generator = generator)
80
 
81
+ return replace_nsfw_images(result)
82
+
83
+ def replace_nsfw_images(results):
84
+
85
+ for i in range(len(results.images)):
86
+ if results.nsfw_content_detected[i]:
87
+ results.images[i] = Image.open("nsfw.png")
88
+ return results.images[0]
89
+
90
+ css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
91
+ """
92
+ with gr.Blocks(css=css) as demo:
93
+ gr.HTML(
94
+ f"""
95
+ <div class="main-div">
96
+ <div>
97
+ <h1>Stable Diffusion 2</h1>
98
+ </div>
99
+ <p>
100
+ Demo for <a href="https://huggingface.co/stabilityai/stable-diffusion-2">Stable Diffusion 2</a> Stable Diffusion model.<br>
101
+ Add the following tokens to your prompts for the model to work properly: <b></b>.
102
+ </p>
103
+ Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b>
104
+ </div>
105
+ """
106
+ )
107
+ with gr.Row():
108
+
109
+ with gr.Column(scale=55):
110
+ with gr.Group():
111
+ with gr.Row():
112
+ prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
113
+ generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
114
+
115
+ image_out = gr.Image(height=512)
116
+ error_output = gr.Markdown()
117
+
118
+ with gr.Column(scale=45):
119
+ with gr.Tab("Options"):
120
+ with gr.Group():
121
+ neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
122
+ auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=True)
123
+
124
+ with gr.Row():
125
+ guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
126
+ steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
127
+
128
+ with gr.Row():
129
+ width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
130
+ height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
131
+
132
+ seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
133
+
134
+ with gr.Tab("Image to image"):
135
+ with gr.Group():
136
+ image = gr.Image(label="Image", height=256, tool="editor", type="pil")
137
+ strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
138
+
139
+ auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
+ inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
142
+ outputs = [image_out, error_output]
143
+ prompt.submit(inference, inputs=inputs, outputs=outputs)
144
+ generate.click(inference, inputs=inputs, outputs=outputs)
145
 
146
+ gr.HTML("""
147
+ <div style="border-top: 1px solid #303030;">
148
+ <br>
149
+ <p>This space was created using <a href="https://huggingface.co/spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p>
150
+ </div>
151
+ """)
152
 
153
+ demo.queue(concurrency_count=1)
154
+ demo.launch()