import gradio as gr from transformers import pipeline from PIL import Image, ImageFilter import numpy as np pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") def blur_img(img, blur): depth = pipe(img)["depth"] depth_array = np.array(depth) / 255.0 blurred_image_pil = img.filter(ImageFilter.BoxBlur(blur)) blurred_image_array = np.array(blurred_image_pil) mask_array = np.expand_dims(depth_array, axis=-1) result_array = np.uint8(np.array(img) * mask_array + blurred_image_array * (1 - mask_array)) result_pil = Image.fromarray(result_array) return result_pil #interface inputs = [ gr.Image(type="pil", label="Input Image"), gr.Slider(minimum=1, maximum=10, label="Blur Amount", step=1) ] output = gr.Image(type="pil", label="Blurred Image") app= gr.Interface(fn=blur_img, inputs=inputs, outputs=output, title="Depth Anything model based Image Blurring", description="Upload an image and adjust the blur amount using the slider. \nThis project takes in an image, obtains a depth mask using the Depth Anything model by https://huggingface.co/LiheYoung/depth-anything-base-hf, and blurs image based on the depth mask.", ) app.launch(share=True)