findemov3 / app.py
Danielrahmai1991's picture
Update app.py
b183ef0 verified
import gradio as gr
from langchain_community.llms import LlamaCpp
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.callbacks import StreamingStdOutCallbackHandler
from langchain.retrievers import TFIDFRetriever
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_models import ChatLlamaCpp
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import PromptTemplate
callbacks = [StreamingStdOutCallbackHandler()]
print("creating ll started")
M_NAME = "finbro-v0.1.0-llama-3-8B-instruct-1m.gguf"
llm = ChatLlamaCpp(
model_path=M_NAME,
n_batch=8,
temperature=0.85,
max_tokens=256,
top_p=0.95,
top_k = 10,
callback_manager=callbacks,
n_ctx=2048,
verbose=True, # Verbose is required to pass to the callback manager
)
print("creating ll ended")
# for without memory
template = """You are the Finiantial expert:
### Instruction:
{question}
### Input:
### Response:
"""
prompt = PromptTemplate(template=template, input_variables=["question"])
print("test2")
llm_chain_model = LLMChain(prompt=prompt, llm=llm)
# for retriver
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
model_name = "BAAI/bge-base-en-v1.5"
model_kwargs = {"device":'cpu'}
encode_kwargs = {'normalize_embeddings':True}
hf = HuggingFaceEmbeddings(
model_name = model_name,
model_kwargs = model_kwargs,
encode_kwargs = encode_kwargs
)
vectorstore = Chroma(
collection_name="example_collection",
embedding_function=hf,
persist_directory="./chroma_langchain_db", # Where to save data locally, remove if not neccesary
)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 6})
template = """you are the financial ai assistant
{context}
Question: {question}
Helpful Answer:"""
custom_rag_prompt = PromptTemplate.from_template(template)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| custom_rag_prompt
| llm
| StrOutputParser()
)
print("retriver done")
def greet(question, model_type):
print(f"question is {question}")
if model_type == "With RAG":
out_gen = rag_chain.invoke(question)
print("test5")
print(f"out is: {out_gen}")
else:
print("test3")
out_gen = llm_chain_model.run(question)
print("test4")
print(f"out is: {out_gen}")
return out_gen
demo = gr.Interface(fn=greet, inputs=["text", gr.Dropdown(
["Without RAG", "With RAG"], label="Memory status", info="With using memory, the output will be slow but strong"
),], outputs="text")
demo.launch(debug=True, share=True)