davidberenstein1957's picture
Update app.py
b2df7fd verified
raw
history blame
13.9 kB
import datetime
import os
from typing import Dict, List, Tuple
from uuid import UUID
import altair as alt
from apscheduler.schedulers.background import BackgroundScheduler
import argilla as rg
from argilla.feedback import FeedbackDataset
from huggingface_hub import restart_space
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
# Translation of legends and titels
ANNOTATED = "Annotated"
NUMBER_ANNOTATED = "Total Annotations"
NUMBER_ANNOTATORS = "Total Annotators"
PENDING = "Pending Annotations"
NAME = "Username"
CATEGORY = "Category"
SUPPORTED_LANGUAGES = [
"Russian",
"Dutch",
"Vietnamese",
"Arabic",
"Filipino",
"German",
"Swahili",
"Malagasy",
"Czech",
# "Tamil",
# "Telugu",
"Hungarian"
]
def restart() -> None:
"""
This function restarts the space where the dashboard is hosted.
"""
# Update Space name with your Space information
gr.Info("Restarting space at " + str(datetime.datetime.now()))
restart_space(
"DIBT/PromptTranslationMultilingualDashboard",
token=os.getenv("HF_TOKEN"),
# factory_reboot=True,
)
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def fetch_data() -> Tuple[Dict[str, int], Dict[str, dict]]:
"""
This function fetches the data from all the datasets and stores the annotation information in two dictionaries.
To do so, looks for all the environment variables that follow this pattern:
- SPANISH_API_URL
- SPANISH_API_KEY
- SPANISH_DATASET
- SPANISH_WORKSPACE
If the language name matches with one of the languages present in our SUPPORTED_LANGUAGES list, it will fetch the data
with the total amount of annotations and the total annotators.
Returns:
Tuple[Dict[str, int], Dict[str, dict]]: A tuple with two dictionaries. The first one contains the total amount of annotations
for each language. The second one contains the total annotators for each language.
"""
print(f"Starting to fetch data: {datetime.datetime.now()}")
# Obtain all the environment variables
environment_variables_languages = {}
for language in SUPPORTED_LANGUAGES:
print("Fetching data for: ", language)
if not os.getenv(f"{language.upper()}_API_URL"):
print(f"Missing environment variables for {language}")
continue
environment_variables_languages[language] = {
"api_url": os.getenv(f"{language.upper()}_API_URL"),
"api_key": os.getenv(f"{language.upper()}_API_KEY"),
"dataset_name": os.getenv(f"{language.upper()}_DATASET"),
"workspace_name": os.getenv(f"{language.upper()}_WORKSPACE"),
}
global annotations, annotators
annotations = {}
annotators = {}
# Connect to each space and obtain the total amount of annotations and annotators
for language, environment_variables in environment_variables_languages.items():
rg.init(
api_url=environment_variables["api_url"],
api_key=environment_variables["api_key"],
)
# Obtain the dataset and see how many pending records are there
dataset = rg.FeedbackDataset.from_argilla(
environment_variables["dataset_name"],
workspace=environment_variables["workspace_name"],
)
# filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
target_dataset = dataset.filter_by(response_status=["submitted"])
annotations[language.lower()] = len(target_dataset)
annotators[language.lower()] = {
"annotators": get_user_annotations_dictionary(target_dataset)
}
# Print the current date and time
print(f"Data fetched: {datetime.datetime.now()}")
return annotations, annotators
def kpi_chart_total_annotations() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotations.
Returns:
An altair chart with the KPI chart.
"""
total_annotations = 0
for language in annotations.keys():
total_annotations += annotations[language]
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [NUMBER_ANNOTATED], "Value": [total_annotations]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATED, width=250, height=200)
)
return chart
def kpi_chart_total_annotators() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
total_annotators = 0
for _, value in annotators.items():
total_annotators += len(list(value["annotators"].keys()))
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": [NUMBER_ANNOTATORS], "Value": [total_annotators]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="#e68b39")
.encode(text="Value:N")
.properties(title=NUMBER_ANNOTATORS, width=250, height=200)
)
return chart
def render_hub_user_link(hub_id: str) -> str:
"""
This function returns a link to the user's profile on Hugging Face.
Args:
hub_id: The user's id on Hugging Face.
Returns:
A string with the link to the user's profile on Hugging Face.
"""
link = f"https://huggingface.co/{hub_id}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
def obtain_top_users(user_annotators_list: Dict[str, int], N: int = 50) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
user_id_annotations = {}
for _, user_annotators in user_annotators_list.items():
for user_id, number_annotations in user_annotators["annotators"].items():
if user_id not in user_id_annotations:
user_id_annotations[user_id] = number_annotations
else:
user_id_annotations[user_id] += number_annotations
dataframe = pd.DataFrame(
user_id_annotations.items(), columns=[NAME, NUMBER_ANNOTATED]
)
dataframe[NAME] = dataframe[NAME].apply(render_hub_user_link)
dataframe = dataframe.sort_values(by=NUMBER_ANNOTATED, ascending=False)
return dataframe.head(N)
def get_top(N=50) -> pd.DataFrame:
"""
This function returns the top N users with the most annotations.
Args:
N: The number of users to be returned. 50 by default
Returns:
A pandas dataframe with the top N users with the most annotations.
"""
return obtain_top_users(annotators, N=N)
def donut_chart_total() -> alt.Chart:
"""
This function returns a donut chart with the progress of the total annotations in each language.
Returns:
An altair chart with the donut chart.
"""
# Load your data
annotated_records = [annotation for annotation in annotations.values()]
languages = [language.capitalize() for language in annotations.keys()]
# Prepare data for the donut chart
source = pd.DataFrame(
{
"values": annotated_records,
"category": languages,
# "colors": ["#4682b4", "#e68c39"], # Blue for Completed, Orange for Remaining
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color(
field="category",
type="nominal",
legend=alt.Legend(title=CATEGORY),
),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=20).encode(text="values:Q")
chart = c1 + c2
return chart
def bar_chart_total() -> alt.Chart:
"""A bar chart with the progress of the total annotations in each language.
Returns:
An altair chart with the bar chart.
"""
# Load your data
annotated_records = [annotation for annotation in annotations.values()]
languages = [language.capitalize() for language in annotations.keys()]
# Prepare data for the bar chart
source = pd.DataFrame(
{
"values": annotated_records,
"category": languages,
}
)
base = alt.Chart(source, width=300, height=200).encode(
x=alt.X("values:Q", title="Translations"),
y=alt.Y("category:N", title="Language"),
text="values:Q",
color=alt.Color("category:N", legend=None),
)
rule = alt.Chart(source).mark_rule(color="red").encode(x=alt.datum(500))
return base.mark_bar() + base.mark_text(align="left", dx=2) + rule
def main() -> None:
fetch_data()
# To avoid the orange border for the Gradio elements that are in constant loading
css = """
.generating {
border: none;
}
"""
with gr.Blocks(css=css, delete_cache=(300, 300)) as demo:
gr.Markdown(
"""
# 🌍 Translation Efforts Dashboard - Multilingual Prompt Evaluation Project
You can check out the progress done in each language for the Multilingual Prompt Evaluation Project in this dashboard. If you want to add a new language to this dashboard, please open an issue and we will contact you to obtain the necessary API KEYs and URLs include your language in this dashboard.
## How to participate
Participating is easy. Go to one of the Annotation Spaces of the language of your choice, log in or create a Hugging Face account, and you can start working.
- [Spanish](https://somosnlp-dibt-prompt-translation-for-es.hf.space)
- [Russian](https://dibt-russian-prompt-translation-for-russian.hf.space)
- [Dutch](https://dibt-dutch-prompt-translation-for-dutch.hf.space)
- [Vietnamese](https://ai-vietnam-prompt-translation-for-vie.hf.space)
- [Arabic](https://2a2i-prompt-translation-for-arabic.hf.space)
- [Filipino](https://dibt-filipino-prompt-translation-for-filipino.hf.space)
- [German](https://huggingface.co/spaces/DIBT-German/prompt-translation-for-German)
- [Swahili](https://dibt-swahili-prompt-translation-for-swahili.hf.space)
- [Malagasy](https://dibt-malagasy-prompt-translation-for-malagasy.hf.space)
- [Tamil](https://data-indica-prompt-translation-for-tamil.hf.space)
- [Telugu](https://data-indica-prompt-translation-for-telugu.hf.space)
- [Czech](https://dibt-czech-prompt-translation-for-czech.hf.space)
- [Hungarian](https://dibt-hungarian-prompt-translation-for-hungarian.hf.space)
"""
)
gr.Markdown(
f"""
## πŸš€ Annotations among Languages
Here you can see the progress of the annotations among the different languages.
"""
)
with gr.Row():
kpi_chart_annotations = gr.Plot(label="Plot")
demo.load(
kpi_chart_total_annotations,
inputs=[],
outputs=[kpi_chart_annotations],
)
bar_languages = gr.Plot(label="Plot")
demo.load(
bar_chart_total,
inputs=[],
outputs=[bar_languages],
)
gr.Markdown(
"""
## πŸ‘Ύ Hall of Fame
Check out the users with more contributions among the different translation efforts.
"""
)
with gr.Row():
kpi_chart_annotators = gr.Plot(label="Plot")
demo.load(
kpi_chart_total_annotators,
inputs=[],
outputs=[kpi_chart_annotators],
)
top_df_plot = gr.Dataframe(
headers=[NAME, NUMBER_ANNOTATED],
datatype=[
"markdown",
"number",
],
row_count=50,
col_count=(2, "fixed"),
interactive=False,
)
demo.load(get_top, None, [top_df_plot])
# Manage background refresh
scheduler = BackgroundScheduler()
_ = scheduler.add_job(restart, "interval", minutes=30)
scheduler.start()
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()