Spaces:
Runtime error
Runtime error
File size: 25,397 Bytes
57d08a9 33c29ab e81fe92 b28dd86 57d08a9 e81fe92 57d08a9 e81fe92 57d08a9 33c29ab 57d08a9 77963cd 57d08a9 33c29ab 57d08a9 33c29ab 57d08a9 e81fe92 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd e81fe92 57d08a9 77963cd 57d08a9 77963cd 57d08a9 33c29ab 57d08a9 77963cd 57d08a9 33c29ab 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 574b700 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 7d24b15 57d08a9 77963cd 57d08a9 77963cd 57d08a9 77963cd 57d08a9 33c29ab e81fe92 57d08a9 e81fe92 33c29ab 57d08a9 33c29ab 77963cd 33c29ab 710c5aa c643e6f 9b8a172 526ebf6 c643e6f d2cc12e 33c29ab 08ebed3 5ef395c 3596f44 08ebed3 33c29ab 57d08a9 7186970 57d08a9 33c29ab 57d08a9 33c29ab e81fe92 57d08a9 33c29ab e81fe92 57d08a9 e81fe92 33c29ab 57d08a9 5c454e6 c3f6dc1 dcf28e7 a6f4ef9 77963cd d656a1b 77963cd 57d08a9 2c48ac2 08c74c9 2c48ac2 c4e371c 10def19 c4e371c 2c48ac2 33c29ab 57d08a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
from diffusers import EulerAncestralDiscreteScheduler
import gradio as gr
import torch
import os
from PIL import Image
import datetime
import time
import psutil
from share_btn import community_icon_html, loading_icon_html, share_js
def is_google_colab():
try:
import google.colab
return True
except:
return False
is_colab = is_google_colab()
start_time = time.time()
if torch.cuda.is_available():
torchfloat = torch.float16
else:
torchfloat = torch.float32
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Cyberpunk Anime Diffusion", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
Model("DGSpitzer Art Diffusion", "DGSpitzer/DGSpitzer-Art-Diffusion", "dgspitzer painting,"),
Model("Guan Yu Diffusion", "DGSpitzer/Guan-Yu-Diffusion", "")
]
custom_model = None
if is_colab:
models.insert(0, Model("Custom model"))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe0 = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torchfloat,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
if torch.cuda.is_available():
pipe0 = pipe0.to("cuda")
elif torch.cuda.is_available() == False:
pipe0 = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torchfloat,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
else:
eulera = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipe0 = StableDiffusionPipeline.from_pretrained(
models[0].path,
torch_dtype=torchfloat,
scheduler=eulera
)
pipe1 = StableDiffusionPipeline.from_pretrained(
models[1].path,
torch_dtype=torchfloat,
scheduler=eulera,
use_auth_token=os.environ.get("HF")
)
# pipe1 = StableDiffusionPipeline.from_pretrained(
# models[1].path,
# torch_dtype=torchfloat,
# scheduler=eulera
# )
pipe2 = StableDiffusionPipeline.from_pretrained(
models[2].path,
torch_dtype=torchfloat,
scheduler=eulera
)
if torch.cuda.is_available():
pipe0 = pipe0.to("cuda")
pipe1 = pipe1.to("cuda")
pipe2 = pipe2.to("cuda")
#pipe.enable_xformers_memory_efficient_attention()
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
def inference(model_name, prompt, neg_prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, n_images=1):
print("Generated image with prompt: " + prompt)
if neg_prompt != "":
print("Negative prompt: " + neg_prompt)
print(psutil.virtual_memory()) # print memory usage
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
try:
if img is not None:
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, n_images, generator), None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
else:
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, n_images, generator), None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
except Exception as e:
return None, error_str(e), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def inference_example(model_name, prompt, neg_prompt, guidance, steps, width=512, height=512):
_image, _error, _bool1, _bool2, _bool3 = inference(model_name, prompt, neg_prompt, guidance, steps, width, height)
return _image
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, n_images, generator):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe0
global pipe1
global pipe2
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe0 = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torchfloat,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
if torch.cuda.is_available():
pipe0 = pipe0.to("cuda")
# pipe.enable_xformers_memory_efficient_attention()
elif torch.cuda.is_available() == False:
pipe0 = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torchfloat,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
last_mode = "txt2img"
prompt = current_model.prefix + prompt
if current_model == models[0] or is_colab or torch.cuda.is_available() == False:
result = pipe0(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
elif current_model == models[1]:
result = pipe1(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
elif current_model == models[2]:
result = pipe2(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
print("Job done! Filtering nsfw content")
return replace_nsfw_images(result)
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, n_images, generator):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe0
global pipe1
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe0 = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torchfloat,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe0 = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torchfloat,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
# pipe = pipe.to("cpu")
# pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe0 = pipe0.to("cuda")
#pipe0.enable_xformers_memory_efficient_attention()
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe0(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
# width = width,
# height = height,
generator = generator)
return replace_nsfw_images(result)
def replace_nsfw_images(results):
#Only return 1 image for community sharing
if is_colab:
return results.images[0]
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw_placeholder.jpg")
return results.images[0]
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
DGSpitzer Diffusion Space
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Online Demo for <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion" target="_blank">Cyberpunk Anime Diffusion</a> & <a href="https://huggingface.co/DGSpitzer/DGSpitzer-Art-Diffusion" target="_blank">DGSpitzer Art Diffusion</a> & <a href="https://huggingface.co/DGSpitzer/Guan-Yu-Diffusion" target="_blank">Guan Yu Diffusion</a>. Based of the projects by anzorq <a href="https://twitter.com/hahahahohohe"></a> and fffiloni <a href="https://twitter.com/fffiloni"></a>
</p>
</div>
<div
style="
gap: 1.2rem;
font-size: 1rem;
"
>
<p>Another online version without queue: <a href="https://colab.research.google.com/github/HelixNGC7293/cyberpunk-anime-diffusion/blob/main/cyberpunk_anime_diffusion.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
</div>
"""
)
gr.Markdown('''
👇 Buy me a coffee if you like ♥ this project!
[![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/dgspitzer)
''')
with gr.Row():
with gr.Column():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
#prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt~", elem_id="input-prompt").style(container=False)
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt~", elem_id="input-prompt")
neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what you don't want to generate", elem_id="input-neg-prompt")
width_input = gr.Slider(label="Width", value=576, maximum=768, minimum=384, step=64)
height_input = gr.Slider(label="Height", value=576, maximum=768, minimum=384, step=64)
#n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
guidance = gr.Slider(label="Guidance scale", value=7, maximum=10)
steps = gr.Slider(label="Steps", value=20, maximum=50, minimum=2)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
run = gr.Button(value="Run")
gr.Markdown(f"Running on: {device}")
# with gr.Column(scale=45):
# with gr.Tab("Text to Image"):
# with gr.Group():
# gr.Markdown(f"Current in text to Image Mode, ")
# #seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
# with gr.Tab("Image to Image"):
# with gr.Group():
# gr.Markdown(f"Image to Image Mode")
# image = gr.Image(label="Image", height=256, tool="editor", type="pil")
# strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
with gr.Column():
image_out = gr.Image(height=512, type="filepath", elem_id="output-img")
error_output = gr.Markdown()
#gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
with gr.Column(elem_id="col-container"):
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
if is_colab:
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
#outputs = [gallery, error_output]
run.click(inference, inputs=[model_name, prompt, neg_prompt, guidance, steps, width_input, height_input, seed], outputs=[image_out, error_output, share_button, community_icon, loading_icon])
share_button.click(None, [], [], _js=share_js)
gr.Examples([
[models[0].name, "perfect face portrait of beautiful smile girl, clean face, wears hoody, half body, soldier working in a cyberpunk city, cleavage, intricate, 8k, highly detailed, digital painting, intense, sharp focus", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 512, 704],
[models[0].name, "portrait of a beautiful fancy gorgeous anime girl, intricate details", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 448, 640],
[models[0].name, "city landscape with fancy car, racing on the road, gopro, intricate details, 4k, cyberpunk", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 704, 704],
[models[0].name, "portrait of liu yifei girl, soldier working in a cyberpunk city, cleavage, intricate, 8k, highly detailed, digital painting, intense, sharp focus", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 704, 704],
[models[0].name, "portrait of a muscular beard male in dgs illustration style, half-body, holding robot arms, strong chest", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 512, 640],
[models[1].name, "portrait of professional photo of a cute girl, brown hair, freckles, perfect nose, fringe, green eyes, space clothing, space suit, glowing dragon logo on chest, dragon clothes, wearing orange dragon robe, blue dragon belt, dragon pants, dragon cape, action scene, dramatic pose, medium_breasts, perfect face, perfect eyes, pores, soft light,strong body, intricate detail,sharp focus, detailed background, masterpiece, highest quality, 4k, thick thighs, strong legs, tall, High detail RAW color, in spaceship, metal walls, feminine, highly detailed, white neon lights, skin pores, smile, high detail hair, sharp body, detailed body, gorgeous face, realistic, real, fit", "lowres, low quality, twisted,unappealing,uneven,unprofessional,draft,fake face, fake,uneven body, unnatural face, plastic face,out of focus,out of frame, poorly drawn, crippled, crooked, broken, weird, distorted, erased, cut, mutilated, sloppy, ugly, pixelated, bad hands, aliasing, poorly drawn, sloppy, over exposed, over saturated, burnt image, sloppy, fuzzy, poor quality, pixelated, sleepy, closed-eyes, pixelated, ugly, bad anatomy, hideous, deformed, mutant, sloppy, poorly drawn, poorly detailed, smudged, sketch, pencil, doll, plastic, disfigured, close up, topless, nude, naked, cleavage, tits, belly", 7, 30, 576, 576],
[models[1].name, "professional photo portrait of muscular man male, brown hair, freckles, fringe, brown eyes, space clothing, space suit, glowing UNSC logo on chest, wearing blue astronaut robe, blue space belt, dragon pants, action scene, ", "lowres, low quality, twisted,unappealing,uneven,unprofessional,draft,fake face, fake,uneven body, unnatural face, plastic face,out of focus,out of frame, poorly drawn, crippled, crooked, broken, weird, distorted, erased, cut, mutilated, sloppy, ugly, pixelated, bad hands, aliasing, poorly drawn, sloppy, over exposed, over saturated, burnt image, sloppy, fuzzy, poor quality, pixelated, sleepy, closed-eyes, pixelated, ugly, bad anatomy, hideous, deformed, mutant, sloppy, poorly drawn, poorly detailed, smudged, sketch, pencil, doll, plastic, disfigured, close up, topless, nude, naked, cleavage, tits, belly", 7, 30, 576, 576],
[models[1].name, "a painting of professional portrait steampunk lady doctor, smart eyes,high-tec huge glasses, very thick dark eyebrow, brown eyes, tan skin, short fancy braid hair, intricate deails, aquiline nose", "cat ear, body out of frame, deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limbs", 7, 30, 576, 576],
[models[1].name, "a whiteshape professional portrait steampunk fancy bun very short hair girl, gears clothes, heavy armor, masterpiece, 4k, action scene, dramatic pose, small_breasts, perfect face, perfect eyes, pores, soft light,strong body, intricate detail,sharp focus, detailed background, masterpiece, highest quality, 4k, thick thighs, strong legs, tall, High detail RAW color, in spaceship, metal walls, feminine, highly detailed, white neon lights, skin pores, smile, high detail hair, sharp body, detailed body, gorgeous face, realistic, real, fit", "cat ear, body out of frame, deformed, blurry, bad anatomy, ugly, disfigured, poorly drawn face, mutation, mutated, extra limbs", 7, 30, 576, 576],
[models[1].name, "outline anime portrait of a beautiful martial art girl", "saturation, purple, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[1].name, "a beautiful mech girl, 4k, photorealistic", "saturation", 7, 30, 576, 576],
[models[1].name, "portrait of a girl, photorealistic painting paladin priest working in a magical tavern, cleavage, perfect face, curvy hair, intricate, 8k, highly detailed, intense, sharp focus, Anime, outline", "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet", 7, 30, 576, 576],
[models[1].name, "a mech robot", "purple", 7, 30, 576, 576],
[models[1].name, "portrait of a beautiful very young teen cowboy girl who embodies the rugged and independent spirit of the Old West. She should be strong-willed and confident, with a sharp sense of justice and a heart of gold. Her style should be a blend of traditional Western fashion and modern flair, with a touch of glamour and femininity. Whether she's taming wild horses, fighting off bandits, or just enjoying the sunset on the prairie, this cowboy girl is a force to be reckoned with and a sight to behold.", "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet", 7, 30, 576, 576],
[models[1].name, "a muscular man from space", "blurry, out of focus", 7, 30, 576, 576],
[models[1].name, "landscape of a cyberpunk soldier man in the battlefield, dark light, far away", "blurry, out of focus", 7, 30, 704, 576],
[models[2].name, "Portrait of guanyu walking in ancient battlefield, close up shot", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "Portrait of a man holding very cute panda plushie, Guanyu", "", 7, 30, 576, 576],
[models[2].name, "taking selfie on ancient battlefield of China, guanyu, gopro, sharp focus, old scratched photo, three kingdoms warriors everywhere, masterpiece", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "superman, portrait of fancy superhero guanyu, golden spiderman, mech, robot, high tech, shining core, intricate details, 4k", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "batman, portrait of fancy superhero guanyu, golden spiderman, mech, robot, high tech, shining core, intricate details, 4k", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "a huge gundam mech fighting against guanyu", "blurry, out of focus", 7, 30, 576, 576],
[models[2].name, "a cute nendoroid figure toy guanyu", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "a cute funko figure toy guanyu", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "a lego guanyu", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "a gorgeous wuxia girl standing in the palace", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "a handsome wuxia man", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
[models[2].name, "a wuxia girl diving underwater, surrounded by a shark", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 576, 576],
[models[2].name, "a cute nendoroid wuxia figure toy", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
], [model_name, prompt, neg_prompt, guidance, steps, width_input, height_input], outputs=image_out, fn=inference_example, cache_examples=torch.cuda.is_available())
gr.Markdown('''
Models and Space by [@DGSpitzer](https://www.youtube.com/channel/UCzzsYBF4qwtMwJaPJZ5SuPg)❤️ [@大谷的游戏创作小屋](https://space.bilibili.com/176003)
[![Twitter Follow](https://img.shields.io/twitter/follow/DGSpitzer?label=%40DGSpitzer&style=social)](https://twitter.com/DGSpitzer)
![visitors](https://visitor-badge.glitch.me/badge?page_id=dgspitzer_DGS_Diffusion_Space)
![Model Views](https://visitor-badge.glitch.me/badge?page_id=DGspitzer_Art_Diffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab) |