File size: 25,397 Bytes
57d08a9
 
33c29ab
 
e81fe92
b28dd86
57d08a9
 
 
e81fe92
 
 
57d08a9
 
 
 
 
 
 
 
 
 
 
 
e81fe92
 
 
 
 
57d08a9
 
 
 
 
 
 
 
33c29ab
 
57d08a9
77963cd
57d08a9
33c29ab
 
57d08a9
 
 
 
33c29ab
57d08a9
 
 
e81fe92
57d08a9
77963cd
57d08a9
77963cd
57d08a9
 
 
77963cd
 
 
 
 
 
 
 
 
 
e81fe92
57d08a9
 
77963cd
 
 
57d08a9
 
77963cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d08a9
33c29ab
 
 
57d08a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77963cd
57d08a9
 
 
 
 
 
 
 
 
 
 
 
 
 
33c29ab
57d08a9
 
 
77963cd
 
 
57d08a9
 
 
 
 
77963cd
57d08a9
77963cd
57d08a9
 
 
77963cd
 
 
 
 
 
 
 
 
57d08a9
 
 
77963cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574b700
57d08a9
 
 
 
 
 
 
77963cd
 
57d08a9
 
 
 
 
77963cd
57d08a9
77963cd
57d08a9
 
 
 
77963cd
57d08a9
77963cd
57d08a9
 
 
 
 
 
77963cd
7d24b15
57d08a9
 
 
 
 
77963cd
57d08a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77963cd
57d08a9
 
 
77963cd
57d08a9
 
33c29ab
e81fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d08a9
e81fe92
 
 
33c29ab
 
 
 
 
 
 
 
 
 
 
 
57d08a9
33c29ab
 
 
77963cd
33c29ab
710c5aa
c643e6f
 
9b8a172
526ebf6
c643e6f
 
d2cc12e
33c29ab
 
 
08ebed3
5ef395c
3596f44
08ebed3
33c29ab
 
 
57d08a9
 
 
 
7186970
 
57d08a9
 
 
 
33c29ab
 
57d08a9
 
 
 
 
 
 
 
 
 
 
 
 
33c29ab
e81fe92
57d08a9
 
 
33c29ab
e81fe92
 
 
 
 
57d08a9
 
 
 
 
 
 
e81fe92
 
 
33c29ab
57d08a9
 
 
 
5c454e6
c3f6dc1
 
dcf28e7
a6f4ef9
77963cd
d656a1b
 
77963cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d08a9
2c48ac2
08c74c9
2c48ac2
 
c4e371c
10def19
c4e371c
2c48ac2
33c29ab
57d08a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
from diffusers import EulerAncestralDiscreteScheduler
import gradio as gr
import torch
import os
from PIL import Image
import datetime
import time
import psutil

from share_btn import community_icon_html, loading_icon_html, share_js

def is_google_colab():
    try:
        import google.colab
        return True
    except:
        return False

is_colab = is_google_colab()
        
start_time = time.time()


if torch.cuda.is_available():
  torchfloat = torch.float16
else:
  torchfloat = torch.float32

class Model:
    def __init__(self, name, path="", prefix=""):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None


models = [
   Model("Cyberpunk Anime Diffusion", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
   Model("DGSpitzer Art Diffusion", "DGSpitzer/DGSpitzer-Art-Diffusion", "dgspitzer painting,"),
   Model("Guan Yu Diffusion", "DGSpitzer/Guan-Yu-Diffusion", "")
]

custom_model = None
if is_colab:
  models.insert(0, Model("Custom model"))
  custom_model = models[0]

last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path

if is_colab:
  pipe0 = StableDiffusionPipeline.from_pretrained(
      current_model.path,
      torch_dtype=torchfloat,
      scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
      safety_checker=lambda images, clip_input: (images, False)
      )
    
  if torch.cuda.is_available():
    pipe0 = pipe0.to("cuda")

elif torch.cuda.is_available() == False:
  pipe0 = StableDiffusionPipeline.from_pretrained(
    current_model.path,
    torch_dtype=torchfloat,
    scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
    )

else:
  eulera = EulerAncestralDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
  pipe0 = StableDiffusionPipeline.from_pretrained(
      models[0].path,
      torch_dtype=torchfloat,
      scheduler=eulera
      )
  pipe1 = StableDiffusionPipeline.from_pretrained(
      models[1].path,
      torch_dtype=torchfloat,
      scheduler=eulera,
      use_auth_token=os.environ.get("HF")
      )
#  pipe1 = StableDiffusionPipeline.from_pretrained(
#      models[1].path,
#      torch_dtype=torchfloat,
#      scheduler=eulera
#      )
  pipe2 = StableDiffusionPipeline.from_pretrained(
      models[2].path,
      torch_dtype=torchfloat,
      scheduler=eulera
      )
  if torch.cuda.is_available():
    pipe0 = pipe0.to("cuda")
    pipe1 = pipe1.to("cuda")
    pipe2 = pipe2.to("cuda")
      
  #pipe.enable_xformers_memory_efficient_attention()

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def error_str(error, title="Error"):
    return f"""#### {title}
            {error}"""  if error else ""

def custom_model_changed(path):
  models[0].path = path
  global current_model
  current_model = models[0]

def on_model_change(model_name):
  
  prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"

  return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)

def inference(model_name, prompt, neg_prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, n_images=1):
  print("Generated image with prompt: " + prompt)
  if neg_prompt != "":
    print("Negative prompt: " + neg_prompt)
      
  print(psutil.virtual_memory()) # print memory usage

  global current_model
  for model in models:
    if model.name == model_name:
      current_model = model
      model_path = current_model.path

  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
  
  try:
    if img is not None:
      return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, n_images, generator), None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
    else:
      return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, n_images, generator), None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
  except Exception as e:
    return None, error_str(e), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

def inference_example(model_name, prompt, neg_prompt, guidance, steps, width=512, height=512):
    _image, _error, _bool1, _bool2, _bool3 = inference(model_name, prompt, neg_prompt, guidance, steps, width, height)
    return _image


def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, n_images, generator):

    print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")

    global last_mode
    global pipe0
    global pipe1
    global pipe2
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        if is_colab or current_model == custom_model:
          pipe0 = StableDiffusionPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torchfloat,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
          if torch.cuda.is_available():
            pipe0 = pipe0.to("cuda")
            # pipe.enable_xformers_memory_efficient_attention()
        elif torch.cuda.is_available() == False:
          pipe0 = StableDiffusionPipeline.from_pretrained(
            current_model_path,
            torch_dtype=torchfloat,
            scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
            )
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt  
    if current_model == models[0] or is_colab or torch.cuda.is_available() == False:
        result = pipe0(
          prompt,
          negative_prompt = neg_prompt,
          num_images_per_prompt=n_images,
          num_inference_steps = int(steps),
          guidance_scale = guidance,
          width = width,
          height = height,
          generator = generator)
    elif current_model == models[1]:
        result = pipe1(
          prompt,
          negative_prompt = neg_prompt,
          num_images_per_prompt=n_images,
          num_inference_steps = int(steps),
          guidance_scale = guidance,
          width = width,
          height = height,
          generator = generator)
    elif current_model == models[2]:
        result = pipe2(
          prompt,
          negative_prompt = neg_prompt,
          num_images_per_prompt=n_images,
          num_inference_steps = int(steps),
          guidance_scale = guidance,
          width = width,
          height = height,
          generator = generator)
    
    print("Job done! Filtering nsfw content")
    
    return replace_nsfw_images(result)

def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, n_images, generator):

    print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")

    global last_mode
    global pipe0
    global pipe1
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        if is_colab or current_model == custom_model:
          pipe0 = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torchfloat,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
              safety_checker=lambda images, clip_input: (images, False)
              )
        else:
          pipe0 = StableDiffusionImg2ImgPipeline.from_pretrained(
              current_model_path,
              torch_dtype=torchfloat,
              scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
              )
          # pipe = pipe.to("cpu")
          # pipe = current_model.pipe_i2i
        
        if torch.cuda.is_available():
          pipe0 = pipe0.to("cuda")
          #pipe0.enable_xformers_memory_efficient_attention()
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe0(
        prompt,
        negative_prompt = neg_prompt,
        num_images_per_prompt=n_images,
        image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        # width = width,
        # height = height,
        generator = generator)
        
    return replace_nsfw_images(result)

def replace_nsfw_images(results):
    #Only return 1 image for community sharing
    if is_colab:
      return results.images[0]

    for i in range(len(results.images)):
      if results.nsfw_content_detected[i]:
        results.images[i] = Image.open("nsfw_placeholder.jpg")
          
    return results.images[0]


css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
    animation: spin 1s linear infinite;
}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
#gallery{min-height:20rem}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  DGSpitzer Diffusion Space
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
               Online Demo for <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion" target="_blank">Cyberpunk Anime Diffusion</a> & <a href="https://huggingface.co/DGSpitzer/DGSpitzer-Art-Diffusion" target="_blank">DGSpitzer Art Diffusion</a> & <a href="https://huggingface.co/DGSpitzer/Guan-Yu-Diffusion" target="_blank">Guan Yu Diffusion</a>. Based of the projects by anzorq <a href="https://twitter.com/hahahahohohe"></a> and fffiloni <a href="https://twitter.com/fffiloni"></a>
              </p>
            </div>
            <div
               style="
                  gap: 1.2rem;
                  font-size: 1rem;
                "
             >
              <p>Another online version without queue: <a href="https://colab.research.google.com/github/HelixNGC7293/cyberpunk-anime-diffusion/blob/main/cyberpunk_anime_diffusion.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
            </div>
        """
    )
    gr.Markdown('''
      👇 Buy me a coffee if you like ♥ this project!
      [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://www.buymeacoffee.com/dgspitzer)
    ''')
    with gr.Row():
        
        with gr.Column():
            model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
            #prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt~", elem_id="input-prompt").style(container=False)
            prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt~", elem_id="input-prompt")
            neg_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter what you don't want to generate", elem_id="input-neg-prompt")
            width_input = gr.Slider(label="Width", value=576, maximum=768, minimum=384, step=64)
            height_input = gr.Slider(label="Height", value=576, maximum=768, minimum=384, step=64)
            #n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
            guidance = gr.Slider(label="Guidance scale", value=7, maximum=10)
            steps = gr.Slider(label="Steps", value=20, maximum=50, minimum=2)
            seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
            run = gr.Button(value="Run")
            gr.Markdown(f"Running on: {device}")
            
            # with gr.Column(scale=45):
            #     with gr.Tab("Text to Image"):
            #         with gr.Group():
            #             gr.Markdown(f"Current in text to Image Mode, ")
            #             #seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
                
            #     with gr.Tab("Image to Image"):
            #         with gr.Group():
            #             gr.Markdown(f"Image to Image Mode")
            #             image = gr.Image(label="Image", height=256, tool="editor", type="pil")
            #             strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
                      
        with gr.Column():
            image_out = gr.Image(height=512, type="filepath", elem_id="output-img")
            error_output = gr.Markdown()
            #gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
        

    with gr.Column(elem_id="col-container"):
        with gr.Group(elem_id="share-btn-container"):
          community_icon = gr.HTML(community_icon_html, visible=False)
          loading_icon = gr.HTML(loading_icon_html, visible=False)
          share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
    
    if is_colab:
      model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
      custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
    
    #outputs = [gallery, error_output]
    run.click(inference, inputs=[model_name, prompt, neg_prompt, guidance, steps, width_input, height_input, seed], outputs=[image_out, error_output, share_button, community_icon, loading_icon])
    
    share_button.click(None, [], [], _js=share_js)
    
    gr.Examples([
        [models[0].name, "perfect face portrait of beautiful smile girl,  clean face, wears hoody, half body, soldier working in a cyberpunk city, cleavage, intricate, 8k, highly detailed, digital painting, intense, sharp focus", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 512, 704],
        [models[0].name, "portrait of a beautiful fancy gorgeous anime girl, intricate details", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 448, 640],
        [models[0].name, "city landscape with fancy car, racing on the road, gopro, intricate details, 4k, cyberpunk", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 704, 704],
        [models[0].name, "portrait of liu yifei girl, soldier working in a cyberpunk city, cleavage, intricate, 8k, highly detailed, digital painting, intense, sharp focus", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 704, 704],
        [models[0].name, "portrait of a muscular beard male in dgs illustration style, half-body, holding robot arms, strong chest", "out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 512, 640],
        [models[1].name, "portrait of professional photo of a cute girl, brown hair, freckles, perfect nose, fringe, green eyes, space clothing, space suit, glowing dragon logo on chest, dragon clothes, wearing orange dragon robe, blue dragon belt, dragon pants, dragon cape, action scene, dramatic pose, medium_breasts, perfect face, perfect eyes, pores, soft light,strong body, intricate detail,sharp focus, detailed background, masterpiece, highest quality, 4k, thick thighs, strong legs, tall, High detail RAW color, in spaceship, metal walls, feminine, highly detailed, white neon lights, skin pores, smile, high detail hair, sharp body, detailed body, gorgeous face, realistic, real, fit", "lowres, low quality, twisted,unappealing,uneven,unprofessional,draft,fake face, fake,uneven body, unnatural face, plastic face,out of focus,out of frame, poorly drawn, crippled, crooked, broken, weird, distorted, erased, cut, mutilated, sloppy, ugly, pixelated, bad hands, aliasing, poorly drawn, sloppy, over exposed, over saturated, burnt image, sloppy, fuzzy, poor quality, pixelated, sleepy, closed-eyes, pixelated, ugly, bad anatomy, hideous, deformed, mutant, sloppy, poorly drawn, poorly detailed, smudged, sketch, pencil, doll, plastic, disfigured, close up, topless, nude, naked, cleavage, tits, belly", 7, 30, 576, 576],
        [models[1].name, "professional photo portrait of muscular man male, brown hair, freckles, fringe, brown eyes, space clothing, space suit, glowing UNSC logo on chest, wearing blue astronaut robe, blue space belt, dragon pants, action scene, ", "lowres, low quality, twisted,unappealing,uneven,unprofessional,draft,fake face, fake,uneven body, unnatural face, plastic face,out of focus,out of frame, poorly drawn, crippled, crooked, broken, weird, distorted, erased, cut, mutilated, sloppy, ugly, pixelated, bad hands, aliasing, poorly drawn, sloppy, over exposed, over saturated, burnt image, sloppy, fuzzy, poor quality, pixelated, sleepy, closed-eyes, pixelated, ugly, bad anatomy, hideous, deformed, mutant, sloppy, poorly drawn, poorly detailed, smudged, sketch, pencil, doll, plastic, disfigured, close up, topless, nude, naked, cleavage, tits, belly", 7, 30, 576, 576],
        [models[1].name, "a painting of professional portrait steampunk lady doctor, smart eyes,high-tec huge glasses, very thick dark eyebrow, brown eyes, tan skin, short fancy braid hair, intricate deails, aquiline nose", "cat ear, body out of frame, deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limbs", 7, 30, 576, 576],
        [models[1].name, "a whiteshape professional portrait steampunk fancy bun very short hair girl, gears clothes, heavy armor, masterpiece, 4k, action scene, dramatic pose, small_breasts, perfect face, perfect eyes, pores, soft light,strong body, intricate detail,sharp focus, detailed background, masterpiece, highest quality, 4k, thick thighs, strong legs, tall, High detail RAW color, in spaceship, metal walls, feminine, highly detailed, white neon lights, skin pores, smile, high detail hair, sharp body, detailed body, gorgeous face, realistic, real, fit", "cat ear, body out of frame, deformed, blurry, bad anatomy, ugly, disfigured, poorly drawn face, mutation, mutated, extra limbs", 7, 30, 576, 576],
        [models[1].name, "outline anime portrait of a beautiful martial art girl", "saturation, purple, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[1].name, "a beautiful mech girl, 4k, photorealistic", "saturation", 7, 30, 576, 576],
        [models[1].name, "portrait of a girl, photorealistic painting paladin priest working in a magical tavern, cleavage, perfect face, curvy hair, intricate, 8k, highly detailed, intense, sharp focus, Anime, outline", "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet", 7, 30, 576, 576],
        [models[1].name, "a mech robot", "purple", 7, 30, 576, 576],
        [models[1].name, "portrait of a beautiful very young teen cowboy girl who embodies the rugged and independent spirit of the Old West. She should be strong-willed and confident, with a sharp sense of justice and a heart of gold. Her style should be a blend of traditional Western fashion and modern flair, with a touch of glamour and femininity. Whether she's taming wild horses, fighting off bandits, or just enjoying the sunset on the prairie, this cowboy girl is a force to be reckoned with and a sight to behold.", "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet", 7, 30, 576, 576],
        [models[1].name, "a muscular man from space", "blurry, out of focus", 7, 30, 576, 576],
        [models[1].name, "landscape of a cyberpunk soldier man in the battlefield, dark light, far away", "blurry, out of focus", 7, 30, 704, 576],
        [models[2].name, "Portrait of guanyu walking in ancient battlefield, close up shot", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "Portrait of a man holding very cute panda plushie, Guanyu", "", 7, 30, 576, 576],
        [models[2].name, "taking selfie on ancient battlefield of China, guanyu, gopro, sharp focus, old scratched photo, three kingdoms warriors everywhere, masterpiece", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "superman, portrait of fancy superhero guanyu, golden spiderman, mech, robot, high tech, shining core, intricate details, 4k", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "batman, portrait of fancy superhero guanyu, golden spiderman, mech, robot, high tech, shining core, intricate details, 4k", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "a huge gundam mech fighting against guanyu", "blurry, out of focus", 7, 30, 576, 576],
        [models[2].name, "a cute nendoroid figure toy guanyu", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "a cute funko figure toy guanyu", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "a lego guanyu", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "a gorgeous wuxia girl standing in the palace", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "a handsome wuxia man", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
        [models[2].name, "a wuxia girl diving underwater, surrounded by a shark", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 20, 576, 576],
        [models[2].name, "a cute nendoroid wuxia figure toy", "blurry, out of focus, scary, creepy, evil, disfigured, missing limbs, ugly, gross, missing fingers", 7, 30, 576, 576],
    ], [model_name, prompt, neg_prompt, guidance, steps, width_input, height_input], outputs=image_out, fn=inference_example, cache_examples=torch.cuda.is_available())
    gr.Markdown('''
      Models and Space by [@DGSpitzer](https://www.youtube.com/channel/UCzzsYBF4qwtMwJaPJZ5SuPg)❤️ [@大谷的游戏创作小屋](https://space.bilibili.com/176003)
      [![Twitter Follow](https://img.shields.io/twitter/follow/DGSpitzer?label=%40DGSpitzer&style=social)](https://twitter.com/DGSpitzer)
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=dgspitzer_DGS_Diffusion_Space)
      
      ![Model Views](https://visitor-badge.glitch.me/badge?page_id=DGspitzer_Art_Diffusion)
      
    ''')

if not is_colab:
  demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)