Spaces:
Runtime error
Runtime error
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate images using pretrained network pickle.""" | |
from ast import parse | |
import os | |
from pyexpat import model | |
import re | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from networks_fastgan import MyGenerator | |
import random | |
#---------------------------------------------------------------------------- | |
def parse_range(s: Union[str, List]) -> List[int]: | |
'''Parse a comma separated list of numbers or ranges and return a list of ints. | |
Example: '1,2,5-10' returns [1, 2, 5, 6, 7] | |
''' | |
if isinstance(s, list): return s | |
ranges = [] | |
range_re = re.compile(r'^(\d+)-(\d+)$') | |
for p in s.split(','): | |
m = range_re.match(p) | |
if m: | |
ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) | |
else: | |
ranges.append(int(p)) | |
return ranges | |
#---------------------------------------------------------------------------- | |
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]: | |
'''Parse a floating point 2-vector of syntax 'a,b'. | |
Example: | |
'0,1' returns (0,1) | |
''' | |
if isinstance(s, tuple): return s | |
parts = s.split(',') | |
if len(parts) == 2: | |
return (float(parts[0]), float(parts[1])) | |
raise ValueError(f'cannot parse 2-vector {s}') | |
#---------------------------------------------------------------------------- | |
def make_transform(translate: Tuple[float,float], angle: float): | |
m = np.eye(3) | |
s = np.sin(angle/360.0*np.pi*2) | |
c = np.cos(angle/360.0*np.pi*2) | |
m[0][0] = c | |
m[0][1] = s | |
m[0][2] = translate[0] | |
m[1][0] = -s | |
m[1][1] = c | |
m[1][2] = translate[1] | |
return m | |
#---------------------------------------------------------------------------- | |
def generate_images( | |
model_path, | |
seeds = "10-12", | |
truncation_psi = 1.0, | |
noise_mode = "const", | |
outdir = "out", | |
translate = "0,0", | |
rotate = 0, | |
number_of_images = 16 | |
): | |
model_owner = "huggan" | |
#inputs = gr.inputs.Radio(["Abstract Expressionism", "Impressionism", "Cubism", "Minimalism", "Pop Art", "Color Field", "Hana Hanak houses"]) | |
model_path_dict = { | |
'Impressionism' : 'projected_gan_impressionism', | |
'Cubism' : 'projected_gan_cubism', | |
'Abstract Expressionism' : 'projected_gan_abstract_expressionism', | |
'Pop Art' : 'projected_gan_popart', | |
'Minimalism' : 'projected_gan_minimalism', | |
'Color Field' : 'projected_gan_color_field', | |
'Hana Hanak houses' : 'projected_gan_Hana_Hanak', | |
'Hana Hanak houses - abstract expressionism' : 'projected_gan_abstract_expressionism_hana', | |
'Hana Hanak houses - color field' : 'projected_gan_color_field_hana', | |
} | |
model_path = model_owner + "/" + model_path_dict[model_path] | |
print(model_path) | |
print(seeds) | |
seeds=[random.randint(1,230)] | |
#seeds =f"{seeds}-{seeds+number_of_images-1}" | |
#seeds = parse_range(seeds) | |
#device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
device = torch.device('cpu') | |
G = MyGenerator.from_pretrained(model_path) | |
os.makedirs(outdir, exist_ok=True) | |
# Labels. | |
label = torch.zeros([1, G.c_dim], device=device) | |
""" | |
if G.c_dim != 0: | |
if class_idx is None: | |
raise click.ClickException('Must specify class label with --class when using a conditional network') | |
label[:, class_idx] = 1 | |
else: | |
if class_idx is not None: | |
print ('warn: --class=lbl ignored when running on an unconditional network') | |
""" | |
print(f"z dimenzija mi je: {G.z_dim}") | |
# Generate images. | |
#imgs_row = np.array() | |
#imgs_complete = np.array() | |
print(seeds) | |
for seed_idx, seed in enumerate(seeds): | |
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) | |
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device).float() | |
# Construct an inverse rotation/translation matrix and pass to the generator. The | |
# generator expects this matrix as an inverse to avoid potentially failing numerical | |
# operations in the network. | |
if hasattr(G.synthesis, 'input'): | |
m = make_transform(translate, rotate) | |
m = np.linalg.inv(m) | |
G.synthesis.input.transform.copy_(torch.from_numpy(m)) | |
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
print(seed_idx) | |
""" | |
#first image | |
if seed_idx == 0: | |
imgs_row = img[0].cpu().numpy() | |
else: | |
imgs_row = np.hstack((imgs_row, img[0].cpu().numpy()))""" | |
#img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB') | |
#PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png') | |
#napravi vsplit i toe to ka | |
#imgs_complete = np.vstack(np.hsplit(imgs_row, 4)) | |
#cv2.imshow("lalaxd", imgs_complete) | |
#cv2.waitKey() | |
return PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB') | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
generate_images() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |