Spaces:
Runtime error
Runtime error
import functools | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import spectral_norm | |
### single layers | |
def conv2d(*args, **kwargs): | |
return spectral_norm(nn.Conv2d(*args, **kwargs)) | |
def convTranspose2d(*args, **kwargs): | |
return spectral_norm(nn.ConvTranspose2d(*args, **kwargs)) | |
def embedding(*args, **kwargs): | |
return spectral_norm(nn.Embedding(*args, **kwargs)) | |
def linear(*args, **kwargs): | |
return spectral_norm(nn.Linear(*args, **kwargs)) | |
def NormLayer(c, mode='batch'): | |
if mode == 'group': | |
return nn.GroupNorm(c//2, c) | |
elif mode == 'batch': | |
return nn.BatchNorm2d(c) | |
### Activations | |
class GLU(nn.Module): | |
def forward(self, x): | |
nc = x.size(1) | |
assert nc % 2 == 0, 'channels dont divide 2!' | |
nc = int(nc/2) | |
return x[:, :nc] * torch.sigmoid(x[:, nc:]) | |
class Swish(nn.Module): | |
def forward(self, feat): | |
return feat * torch.sigmoid(feat) | |
### Upblocks | |
class InitLayer(nn.Module): | |
def __init__(self, nz, channel, sz=4): | |
super().__init__() | |
self.init = nn.Sequential( | |
convTranspose2d(nz, channel*2, sz, 1, 0, bias=False), | |
NormLayer(channel*2), | |
GLU(), | |
) | |
def forward(self, noise): | |
noise = noise.view(noise.shape[0], -1, 1, 1) | |
return self.init(noise) | |
def UpBlockSmall(in_planes, out_planes): | |
block = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='nearest'), | |
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), | |
NormLayer(out_planes*2), GLU()) | |
return block | |
class UpBlockSmallCond(nn.Module): | |
def __init__(self, in_planes, out_planes, z_dim): | |
super().__init__() | |
self.in_planes = in_planes | |
self.out_planes = out_planes | |
self.up = nn.Upsample(scale_factor=2, mode='nearest') | |
self.conv = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) | |
which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) | |
self.bn = which_bn(2*out_planes) | |
self.act = GLU() | |
def forward(self, x, c): | |
x = self.up(x) | |
x = self.conv(x) | |
x = self.bn(x, c) | |
x = self.act(x) | |
return x | |
def UpBlockBig(in_planes, out_planes): | |
block = nn.Sequential( | |
nn.Upsample(scale_factor=2, mode='nearest'), | |
conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False), | |
NoiseInjection(), | |
NormLayer(out_planes*2), GLU(), | |
conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False), | |
NoiseInjection(), | |
NormLayer(out_planes*2), GLU() | |
) | |
return block | |
class UpBlockBigCond(nn.Module): | |
def __init__(self, in_planes, out_planes, z_dim): | |
super().__init__() | |
self.in_planes = in_planes | |
self.out_planes = out_planes | |
self.up = nn.Upsample(scale_factor=2, mode='nearest') | |
self.conv1 = conv2d(in_planes, out_planes*2, 3, 1, 1, bias=False) | |
self.conv2 = conv2d(out_planes, out_planes*2, 3, 1, 1, bias=False) | |
which_bn = functools.partial(CCBN, which_linear=linear, input_size=z_dim) | |
self.bn1 = which_bn(2*out_planes) | |
self.bn2 = which_bn(2*out_planes) | |
self.act = GLU() | |
self.noise = NoiseInjection() | |
def forward(self, x, c): | |
# block 1 | |
x = self.up(x) | |
x = self.conv1(x) | |
x = self.noise(x) | |
x = self.bn1(x, c) | |
x = self.act(x) | |
# block 2 | |
x = self.conv2(x) | |
x = self.noise(x) | |
x = self.bn2(x, c) | |
x = self.act(x) | |
return x | |
class SEBlock(nn.Module): | |
def __init__(self, ch_in, ch_out): | |
super().__init__() | |
self.main = nn.Sequential( | |
nn.AdaptiveAvgPool2d(4), | |
conv2d(ch_in, ch_out, 4, 1, 0, bias=False), | |
Swish(), | |
conv2d(ch_out, ch_out, 1, 1, 0, bias=False), | |
nn.Sigmoid(), | |
) | |
def forward(self, feat_small, feat_big): | |
return feat_big * self.main(feat_small) | |
### Downblocks | |
class SeparableConv2d(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, bias=False): | |
super(SeparableConv2d, self).__init__() | |
self.depthwise = conv2d(in_channels, in_channels, kernel_size=kernel_size, | |
groups=in_channels, bias=bias, padding=1) | |
self.pointwise = conv2d(in_channels, out_channels, | |
kernel_size=1, bias=bias) | |
def forward(self, x): | |
out = self.depthwise(x) | |
out = self.pointwise(out) | |
return out | |
class DownBlock(nn.Module): | |
def __init__(self, in_planes, out_planes, separable=False): | |
super().__init__() | |
if not separable: | |
self.main = nn.Sequential( | |
conv2d(in_planes, out_planes, 4, 2, 1), | |
NormLayer(out_planes), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
else: | |
self.main = nn.Sequential( | |
SeparableConv2d(in_planes, out_planes, 3), | |
NormLayer(out_planes), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.AvgPool2d(2, 2), | |
) | |
def forward(self, feat): | |
return self.main(feat) | |
class DownBlockPatch(nn.Module): | |
def __init__(self, in_planes, out_planes, separable=False): | |
super().__init__() | |
self.main = nn.Sequential( | |
DownBlock(in_planes, out_planes, separable), | |
conv2d(out_planes, out_planes, 1, 1, 0, bias=False), | |
NormLayer(out_planes), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
def forward(self, feat): | |
return self.main(feat) | |
### CSM | |
class ResidualConvUnit(nn.Module): | |
def __init__(self, cin, activation, bn): | |
super().__init__() | |
self.conv = nn.Conv2d(cin, cin, kernel_size=3, stride=1, padding=1, bias=True) | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
return self.skip_add.add(self.conv(x), x) | |
class FeatureFusionBlock(nn.Module): | |
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, lowest=False): | |
super().__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.expand = expand | |
out_features = features | |
if self.expand==True: | |
out_features = features//2 | |
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, *xs): | |
output = xs[0] | |
if len(xs) == 2: | |
output = self.skip_add.add(output, xs[1]) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners | |
) | |
output = self.out_conv(output) | |
return output | |
### Misc | |
class NoiseInjection(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.weight = nn.Parameter(torch.zeros(1), requires_grad=True) | |
def forward(self, feat, noise=None): | |
if noise is None: | |
batch, _, height, width = feat.shape | |
noise = torch.randn(batch, 1, height, width).to(feat.device) | |
return feat + self.weight * noise | |
class CCBN(nn.Module): | |
''' conditional batchnorm ''' | |
def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1): | |
super().__init__() | |
self.output_size, self.input_size = output_size, input_size | |
# Prepare gain and bias layers | |
self.gain = which_linear(input_size, output_size) | |
self.bias = which_linear(input_size, output_size) | |
# epsilon to avoid dividing by 0 | |
self.eps = eps | |
# Momentum | |
self.momentum = momentum | |
self.register_buffer('stored_mean', torch.zeros(output_size)) | |
self.register_buffer('stored_var', torch.ones(output_size)) | |
def forward(self, x, y): | |
# Calculate class-conditional gains and biases | |
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1) | |
bias = self.bias(y).view(y.size(0), -1, 1, 1) | |
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None, | |
self.training, 0.1, self.eps) | |
return out * gain + bias | |
class Interpolate(nn.Module): | |
"""Interpolation module.""" | |
def __init__(self, size, mode='bilinear', align_corners=False): | |
"""Init. | |
Args: | |
scale_factor (float): scaling | |
mode (str): interpolation mode | |
""" | |
super(Interpolate, self).__init__() | |
self.interp = nn.functional.interpolate | |
self.size = size | |
self.mode = mode | |
self.align_corners = align_corners | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: interpolated data | |
""" | |
x = self.interp( | |
x, | |
size=self.size, | |
mode=self.mode, | |
align_corners=self.align_corners, | |
) | |
return x | |