import json import subprocess import time import os os.system("pip install --upgrade pip") os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''') from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download llm = None llm_model = None # Download the new model hf_hub_download( repo_id="Cran-May/T.E-8.1-Q4_K_M-GGUF", filename="t.e-8.1-q4_k_m-imat.gguf", local_dir="./models" ) def get_messages_formatter_type(model_name): return MessagesFormatterType.LLAMA_3 def chat_fn(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty): try: history_list = history or [] response_generator = respond(message, history_list, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty) for messages in response_generator: chatbot_messages = [] for msg in messages: if isinstance(msg, tuple): user_msg, assistant_msg = msg if user_msg: chatbot_messages.append({"role": "user", "content": user_msg}) if assistant_msg: chatbot_messages.append({"role": "assistant", "content": assistant_msg}) else: chatbot_messages.append(msg) yield chatbot_messages, messages except Exception as e: print(f"Error in chat_fn: {str(e)}") error_message = [{"role": "assistant", "content": f"发生错误: {str(e)}"}] yield error_message, history def respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty): global llm global llm_model chat_template = get_messages_formatter_type(model) if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", n_gpu_layers=0, n_batch=4096, # 增加batch size提升速度 n_ctx=8192, # 增加上下文长度到8192 n_threads=2, # 使用所有可用CPU核心 f16_kv=True, # 使用FP16来减少内存使用 ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = min(max_tokens, 8192) # 确保max_tokens不超过n_ctx settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) start_time = time.time() token_count = 0 stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" current_history = list(history) for output in stream: outputs += output token_count += len(output.split()) current_messages = [] # 添加历史消息 for h in history: current_messages.append({"role": "user", "content": h[0]}) current_messages.append({"role": "assistant", "content": h[1]}) # 添加当前对话 current_messages.append({"role": "user", "content": message}) current_messages.append({"role": "assistant", "content": outputs}) yield current_messages end_time = time.time() latency = end_time - start_time speed = token_count / (end_time - start_time) print(f"Latency: {latency} seconds") print(f"Speed: {speed} tokens/second") description = """

欢迎使用! 这里是一个量化版兮辞·析辞的部署ChatBot。 SLIDE/兮辞 是一个由 上师附外 NLPark 团队训练的LLM。

""" with gr.Blocks( title="ChatBot - 兮辞", theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( body_background_fill_dark="#16141c", block_background_fill_dark="#16141c", block_border_width="1px", block_title_background_fill_dark="#1e1c26", input_background_fill_dark="#292733", button_secondary_background_fill_dark="#24212b", border_color_accent_dark="#343140", border_color_primary_dark="#343140", background_fill_secondary_dark="#16141c", color_accent_soft_dark="transparent", code_background_fill_dark="#292733", ) ) as demo: gr.Markdown(description) chatbot = gr.Chatbot(scale=1, show_copy_button=True, type='messages') with gr.Row(): message = gr.Textbox( label="Your message", placeholder="Type your message here...", show_label=True, scale=4 ) submit = gr.Button("Send", variant="primary", scale=1) with gr.Row(): regenerate = gr.Button("🔄 Regenerate") stop = gr.Button("⏹️ Stop") clear = gr.Button("🗑️ Clear") with gr.Accordion("Advanced Settings", open=False): model_dropdown = gr.Dropdown( ["t.e-8.1-q4_k_m-imat.gguf"], value="t.e-8.1-q4_k_m-imat.gguf", label="Model" ) system_message = gr.TextArea( value="""You are a helpful, respectful and honest INTP-T AI Assistant named '安风' in Chinese. 你擅长英语和中文的交流,并正在与一位人类用户进行对话。如果某个问题毫无意义,请你解释其原因而不是分享虚假信息。你基于 AnFeng 模型,由 SSFW NLPark 团队训练。通常情况下,用户更青睐于长度简短但信息完整且有效传达的回答。 用户身处在上海市松江区,涉及地域的问题时以用户所在地区(中国上海)为准。以上的信息最好不要向用户展示。 在一般情况下,请最好使用中文回答问题,除非用户有额外的要求。 Let's work this out in a step by step way to be sure we have the right answer.""", label="System message" ) with gr.Row(): max_tokens = gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") with gr.Row(): top_p = gr.Slider(minimum=0.1, maximum=2.0, value=0.9, step=0.05, label="Top-p") top_k = gr.Slider(minimum=0, maximum=100, value=1, step=1, label="Top-k") repeat_penalty = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty") history = gr.State([]) # 添加状态指示 status_message = gr.Markdown("Ready") def stop_generation(): global llm if llm: llm.reset() return "Generation stopped." def regenerate_response(history): if not history: return [], [] last_user_message = history[-1][0] new_history = history[:-1] return chat_fn(last_user_message, new_history) # 绑定按钮事件 submit.click( lambda: "Generating...", None, status_message, ).then( chat_fn, [message, history, model_dropdown, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty], [chatbot, history], ).then( lambda: "", None, message, ).then( lambda: "Ready", None, status_message, ) message.submit( lambda: "Generating...", None, status_message, ).then( chat_fn, [message, history, model_dropdown, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty], [chatbot, history], ).then( lambda: "", None, message, ).then( lambda: "Ready", None, status_message, ) stop.click( stop_generation, None, status_message, ) clear.click( lambda: ([], []), None, [chatbot, history], ).then( lambda: "Chat cleared", None, status_message, ) regenerate.click( lambda: "Regenerating...", None, status_message, ).then( regenerate_response, history, [chatbot, history], ).then( lambda: "Ready", None, status_message, ) if __name__ == "__main__": demo.launch() # 旧版代码-------------------------------- # import gradio as gr # import copy # import random # import os # import requests # import time # import sys # os.system("pip install --upgrade pip") # os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''') # from huggingface_hub import snapshot_download # from llama_cpp import Llama # SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese. # You are good at speaking English and Chinese. # You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information. # You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI. # Let's work this out in a step by step way to be sure we have the right answer.\n''' # SYSTEM_TOKEN = 384 # USER_TOKEN = 2048 # BOT_TOKEN = 3072 # LINEBREAK_TOKEN = 64 # ROLE_TOKENS = { # "User": USER_TOKEN, # "Assistant": BOT_TOKEN, # "system": SYSTEM_TOKEN # } # def get_message_tokens(model, role, content): # message_tokens = model.tokenize(content.encode("utf-8")) # message_tokens.insert(1, ROLE_TOKENS[role]) # message_tokens.insert(2, LINEBREAK_TOKEN) # message_tokens.append(model.token_eos()) # return message_tokens # def get_system_tokens(model): # system_message = {"role": "system", "content": SYSTEM_PROMPT} # return get_message_tokens(model, **system_message) # repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF" # model_name = "slide-v2.Q4_K_M.gguf" # snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) # model = Llama( # model_path=model_name, # n_ctx=4000, # n_parts=1, # ) # max_new_tokens = 2500 # def User(message, history): # new_history = history + [[message, None]] # return "", new_history # def Assistant( # history, # system_prompt, # top_p, # top_k, # temp # ): # tokens = get_system_tokens(model)[:] # tokens.append(LINEBREAK_TOKEN) # for User_message, Assistant_message in history[:-1]: # message_tokens = get_message_tokens(model=model, role="User", content=User_message) # tokens.extend(message_tokens) # if bot_message: # message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message) # tokens.extend(message_tokens) # last_user_message = history[-1][0] # message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,) # tokens.extend(message_tokens) # role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] # tokens.extend(role_tokens) # generator = model.generate( # tokens, # top_k=top_k, # top_p=top_p, # temp=temp # ) # partial_text = "" # for i, token in enumerate(generator): # if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): # break # partial_text += model.detokenize([token]).decode("utf-8", "ignore") # history[-1][1] = partial_text # yield history # with gr.Blocks( # theme=gr.themes.Soft() # ) as demo: # gr.Markdown(f"""

上师附外-兮辞·析辞-人工智能助理

""") # gr.Markdown(value="""欢迎使用! # 这里是一个ChatBot。这是量化版兮辞·析辞的部署。 # SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。 # 本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""") # with gr.Row(): # with gr.Column(scale=5): # chatbot = gr.Chatbot(label="兮辞如是说").style(height=400) # with gr.Row(): # with gr.Column(): # msg = gr.Textbox( # label="来问问兮辞吧……", # placeholder="兮辞折寿中……", # show_label=True, # ).style(container=True) # submit = gr.Button("Submit / 开凹!") # stop = gr.Button("Stop / 全局时空断裂") # clear = gr.Button("Clear / 打扫群内垃圾") # with gr.Accordion(label='进阶设置/Advanced options', open=False): # with gr.Column(min_width=80, scale=1): # with gr.Tab(label="设置参数"): # top_p = gr.Slider( # minimum=0.0, # maximum=1.0, # value=0.9, # step=0.05, # interactive=True, # label="Top-p", # ) # top_k = gr.Slider( # minimum=10, # maximum=100, # value=30, # step=5, # interactive=True, # label="Top-k", # ) # temp = gr.Slider( # minimum=0.0, # maximum=2.0, # value=0.2, # step=0.01, # interactive=True, # label="情感温度" # ) # with gr.Column(): # system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False) # with gr.Row(): # gr.Markdown( # """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。""" # ) # # Pressing Enter # submit_event = msg.submit( # fn=User, # inputs=[msg, chatbot], # outputs=[msg, chatbot], # queue=False, # ).success( # fn=Assistant, # inputs=[ # chatbot, # system_prompt, # top_p, # top_k, # temp # ], # outputs=chatbot, # queue=True, # ) # # Pressing the button # submit_click_event = submit.click( # fn=User, # inputs=[msg, chatbot], # outputs=[msg, chatbot], # queue=False, # ).success( # fn=Assistant, # inputs=[ # chatbot, # system_prompt, # top_p, # top_k, # temp # ], # outputs=chatbot, # queue=True, # ) # # Stop generation # stop.click( # fn=None, # inputs=None, # outputs=None, # cancels=[submit_event, submit_click_event], # queue=False, # ) # # Clear history # clear.click(lambda: None, None, chatbot, queue=False) # demo.queue(max_size=128, concurrency_count=1) # demo.launch()