File size: 4,719 Bytes
f465d93
a865a75
 
 
222b9f2
 
 
 
 
 
 
a865a75
 
9bcbdf9
0e0d8b1
9ad210b
a865a75
0e0d8b1
a865a75
 
331005b
 
a865a75
 
 
 
 
 
 
331005b
 
03ba0ac
a865a75
 
 
9ad210b
a865a75
 
331005b
 
a865a75
ae44536
a865a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba9ba5
a865a75
 
 
 
 
 
 
331005b
a865a75
 
 
 
 
 
 
 
 
331005b
9ad210b
a865a75
 
 
 
 
 
331005b
 
a865a75
f5d144c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from __future__ import annotations
import gradio as gr
import time
from ctransformers import AutoModelForCausalLM
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import subprocess

from huggingface_hub import hf_hub_download

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
model = AutoModelForCausalLM.from_pretrained("TheBloke/Firefly-Llama2-13B-v1.2-GGUF", model_file="firefly-llama2-13b-v1.2.Q4_K_M.gguf", model_type="llama", gpu_layers=0)
ins = '''[INST] <<FRIDAY>>
Remember that your English name is "Shi-Ci" and your name in Chinese is "兮辞". You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</FRIDAY>>
{} [/INST]
'''


theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
def response(question):
    res = model(ins.format(question))
    yield res


examples = [
    "Hello!"
]

def process_example(args):
    for x in response(args):
        pass
    return x
    
css = ".generating {visibility: hidden}"

# Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo
class SeafoamCustom(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.blue,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
            button_primary_text_color="white",
            button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
            block_shadow="*shadow_drop_lg",
            button_shadow="*shadow_drop_lg",
            input_background_fill="zinc",
            input_border_color="*secondary_300",
            input_shadow="*shadow_drop",
            input_shadow_focus="*shadow_drop_lg",
        )


seafoam = SeafoamCustom()


with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(
            """ ## Shi-Ci Extensional Analyzer
            
            Type in the box below and click the button to generate answers to your most pressing questions!
            
      """
        )

        with gr.Row():
    
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")

                with gr.Box():
                    gr.Markdown("**Answer**")
                    output = gr.Markdown(elem_id="q-output")
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=True,
                    fn=process_example,
                    outputs=[output],
                )
        


    submit.click(response, inputs=[instruction], outputs=[output])
    instruction.submit(response, inputs=[instruction], outputs=[output])

demo.queue(concurrency_count=1).launch(debug=False,share=True)