import os import io import PIL import torch import librosa import gradio as gr import numpy as np import pandas as pd import matplotlib.pyplot as plt from transformers import BertConfig, BertTokenizer, XLMRobertaForSequenceClassification, BertForTokenClassification from keras.models import load_model def text_clf_ori(text): vocab_file = "vocab.txt" # 词汇表 tokenizer = BertTokenizer(vocab_file) # 加载模型 config = BertConfig.from_pretrained("nanaaaa/emotion_chinese_english") model = BertForTokenClassification.from_pretrained("nanaaaa/emotion_chinese_english", config=config) inputs = tokenizer(text, return_tensors="pt") # 模型推断 outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1) # 创建标签和概率列表 labels = ["害怕", "高兴喵", "惊喜", "伤心", "生气"] probabilities = probs.detach().cpu().numpy()[0].tolist() # 返回标签和概率列表 return {labels[i]: float(probabilities[0][i]) for i in range(len(labels))} def text_clf(text): vocab_file = "vocab.txt" # 词汇表 tokenizer = BertTokenizer(vocab_file) # 加载模型 config = BertConfig.from_pretrained("nanaaaa/emotion_chinese_english") model = XLMRobertaForSequenceClassification.from_pretrained("nanaaaa/emotion_chinese_english", config=config) inputs = tokenizer(text, return_tensors="pt") # 模型推断 outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1) # 创建标签和概率列表 labels = ["害怕", "高兴喵", "惊喜", "伤心", "生气"] probabilities = probs.detach().cpu().numpy()[0].tolist() # 返回标签和概率列表 return {labels[i]: float(probabilities[i]) for i in range(len(labels))} def audio_clf(aud): my_model = load_model('speech_mfcc_model.h5') def normalizeVoiceLen(y, normalizedLen): nframes = len(y) y = np.reshape(y, [nframes, 1]).T # 归一化音频长度为2s,32000数据点 if (nframes < normalizedLen): res = normalizedLen - nframes res_data = np.zeros([1, res], dtype=np.float32) y = np.reshape(y, [nframes, 1]).T y = np.c_[y, res_data] else: y = y[:, 0:normalizedLen] return y[0] def getNearestLen(framelength, sr): framesize = framelength * sr # 找到与当前framesize最接近的2的正整数次方 nfftdict = {} lists = [32, 64, 128, 256, 512, 1024] for i in lists: nfftdict[i] = abs(framesize - i) print(nfftdict) sortlist = sorted(nfftdict.items(), key=lambda x: x[1]) print(sortlist) framesize = int(sortlist[0][0]) # 取最接近当前framesize的那个2的正整数次方值为新的framesize return framesize VOICE_LEN = 35000 sr, y = aud N_FFT = getNearestLen(0.5, sr) y = normalizeVoiceLen(y, VOICE_LEN) # 归一化长度 mfcc_data = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13, n_fft=N_FFT, hop_length=int(N_FFT / 4)) feature = np.mean(mfcc_data, axis=0) # 数据标准化 data = feature.tolist() DATA_MEAN = np.mean(feature.tolist(), axis=0) DATA_STD = np.std(feature.tolist(), axis=0) data -= DATA_MEAN data /= DATA_STD data = np.array(data) data = data.reshape((1, data.shape[0], 1)) pred = my_model.predict(data) labels1 = ["angry", "fear", "joy", "neutral", "sadness", "surprise"] probabilities1 = pred[0].tolist() return {labels1[i]: float(probabilities1[i]) for i in range(len(labels1))} def cir_clf(L, R): df_4 = pd.read_csv(r'./df_4.csv', encoding="gbk") fig, ax = plt.subplots() r = df_4["R_nor"][int(L):int(R)] theta = (2 * np.pi * df_4["Theta_nor"])[int(L):int(R)] def clf_col(x): if -1.5 * np.pi > x > -2 * np.pi: return 5 if -1.5 * np.pi < x < -1.1 * np.pi: return 2 if -1.1 * np.pi < x < -1 * np.pi: return 3 if 1.04 * np.pi > x > 1 * np.pi: return 3 if 1.1 * np.pi < x < 1.375 * np.pi: return 4 if 1.625 * np.pi > x > 1.375 * np.pi: return 1 if 1.625 * np.pi < x < 2 * np.pi: return 0 theta1 = theta.copy() colors = theta1.apply(lambda x: clf_col(x)) ax = plt.subplot(111, projection="polar") c = ax.scatter(theta, r, c=colors, cmap="hsv", alpha=0.6) fig.set_size_inches(10, 10) def fig2data(fig): import PIL.Image as Image fig.canvas.draw() w, h = fig.canvas.get_width_height() buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) buf = np.roll(buf, 3, axis=2) image = Image.frombytes("RGBA", (w, h), buf.tostring()) image = np.asarray(image) return image return fig2data(fig) with gr.Blocks() as demo: with gr.Tab("Flip Text"): text = gr.Textbox(label="文本哟") text_output = gr.outputs.Label(label="情感呢") text_output1 = gr.outputs.Label(label="情感呢") text_button = gr.Button("确认") text_button1 = gr.Button("确认对比") with gr.Tab("Flip Audio"): audio = gr.Audio(label="音频捏") audio_output = gr.outputs.Label(label="情感哟") audio_button = gr.Button("确认") with gr.Tab("Flip Circle"): cir_l = gr.Slider(0, 30000, step=1) cir_r = gr.Slider(0, 30000, step=1) cir_output = gr.outputs.Image(type='numpy', label="情感圈") cir_button = gr.Button("确认") text_button.click(fn=text_clf, inputs=text, outputs=text_output) text_button1.click(fn=text_clf_ori, inputs=text, outputs=text_output1) audio_button.click(fn=audio_clf, inputs=audio, outputs=audio_output) cir_button.click(fn=cir_clf, inputs=[cir_l, cir_r], outputs=cir_output) demo.launch()