import pandas as pd import os import fnmatch import json import re import numpy as np class ResultDataProcessor: def __init__(self, directory='results', pattern='results*.json'): self.directory = directory self.pattern = pattern self.data = self.process_data() self.ranked_data = self.rank_data() @staticmethod def _find_files(directory, pattern): for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) yield filename def _read_and_transform_data(self, filename): with open(filename) as f: data = json.load(f) df = pd.DataFrame(data['results']).T return df def _cleanup_dataframe(self, df, model_name): df = df.rename(columns={'acc': model_name}) df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True) .str.replace('harness\|', '', regex=True) .str.replace('\|5', '', regex=True)) return df[[model_name]] def _extract_mc1(self, df, model_name): df = df.rename(columns={'mc1': model_name}) # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1 df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True)) # just return the harness|truthfulqa:mc1 row df = df.loc[['harness|truthfulqa:mc1']] return df[[model_name]] def _extract_mc2(self, df, model_name): # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2 df = df.rename(columns={'mc2': model_name}) df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True)) df = df.loc[['harness|truthfulqa:mc2']] return df[[model_name]] # remove extreme outliers from column harness|truthfulqa:mc1 def _remove_mc1_outliers(self, df): mc1 = df['harness|truthfulqa:mc1'] # Identify the outliers # outliers_condition = mc1 > mc1.quantile(.95) outliers_condition = mc1 == 1.0 # Replace the outliers with NaN df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan return df @staticmethod def _extract_parameters(model_name): """ Function to extract parameters from model name. It handles names with 'b/B' for billions and 'm/M' for millions. """ # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions) pattern = re.compile(r'(\d+\.?\d*)([bBmM])') match = pattern.search(model_name) if match: num, magnitude = match.groups() num = float(num) # convert millions to billions if magnitude.lower() == 'm': num /= 1000 return num # return NaN if no match return np.nan def process_data(self): dataframes = [] for filename in self._find_files(self.directory, self.pattern): raw_data = self._read_and_transform_data(filename) split_path = filename.split('/') model_name = split_path[2] organization_name = split_path[1] cleaned_data = self._cleanup_dataframe(raw_data, model_name) mc1 = self._extract_mc1(raw_data, model_name) mc2 = self._extract_mc2(raw_data, model_name) cleaned_data = pd.concat([cleaned_data, mc1]) cleaned_data = pd.concat([cleaned_data, mc2]) # add organization name to the dataframe as a new row cleaned_data.loc['organization'] = organization_name dataframes.append(cleaned_data) data = pd.concat(dataframes, axis=1).transpose() # Add Model Name and rearrange columns data['Model Name'] = data.index cols = data.columns.tolist() cols = cols[-1:] + cols[:-1] data = data[cols] # Remove the 'Model Name' column data = data.drop(columns=['Model Name']) # Add average column data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1) # Reorder columns to move 'MMLU_average' to the third position cols = data.columns.tolist() cols = cols[:2] + cols[-1:] + cols[2:-1] data = data[cols] # Drop specific columns data = data.drop(columns=['all', 'truthfulqa:mc|0']) # Add parameter count column using extract_parameters function data['Parameters'] = data.index.to_series().apply(self._extract_parameters) # move the parameters column to the front of the dataframe cols = data.columns.tolist() cols = cols[-1:] + cols[:-1] data = data[cols] # remove extreme outliers from column harness|truthfulqa:mc1 data = self._remove_mc1_outliers(data) data = data.drop(columns=['organization']) return data def rank_data(self): # add rank for each column to the dataframe # copy the data dataframe to avoid modifying the original dataframe rank_data = self.data.copy() for col in list(rank_data.columns): rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min') return rank_data def get_data(self, selected_models): return self.data[self.data.index.isin(selected_models)]