MMLU-by-task-Leaderboard / result_data_processor.py
Corey
Added clickable links (#1)
59c6dd2 unverified
raw
history blame
8.29 kB
import pandas as pd
import os
import fnmatch
import json
import re
import numpy as np
import logging
logging.basicConfig(filename='error_log.log', level=logging.ERROR)
class ResultDataProcessor:
def __init__(self, directory='results', pattern='results*.json'):
self.directory = directory
self.pattern = pattern
self.data = self.process_data()
self.ranked_data = self.rank_data()
def _find_files(self, directory='results', pattern='results*.json'):
matching_files = {}
for root, dirs, files in os.walk(directory):
for basename in files:
if fnmatch.fnmatch(basename, pattern):
filename = os.path.join(root, basename)
matching_files[root] = filename
# TODO decide on removing this since I am catching the error when processing the file
matching_files = {key: value for key, value in matching_files.items() if 'gpt-j-6b' not in key}
matching_files = list(matching_files.values())
return matching_files
def _read_and_transform_data(self, filename):
with open(filename) as f:
data = json.load(f)
df = pd.DataFrame(data['results']).T
return df
def _cleanup_dataframe(self, df, model_name):
df = df.rename(columns={'acc': model_name})
df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
.str.replace('harness\|', '', regex=True)
.str.replace('\|5', '', regex=True))
return df[[model_name]]
def _extract_mc1(self, df, model_name):
df = df.rename(columns={'mc1': model_name})
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
# just return the harness|truthfulqa:mc1 row
df = df.loc[['harness|truthfulqa:mc1']]
return df[[model_name]]
def _extract_mc2(self, df, model_name):
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
df = df.rename(columns={'mc2': model_name})
df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
df = df.loc[['harness|truthfulqa:mc2']]
return df[[model_name]]
# remove extreme outliers from column harness|truthfulqa:mc1
def _remove_mc1_outliers(self, df):
mc1 = df['harness|truthfulqa:mc1']
# Identify the outliers
# outliers_condition = mc1 > mc1.quantile(.95)
outliers_condition = mc1 == 1.0
# Replace the outliers with NaN
df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
return df
@staticmethod
def _extract_parameters(model_name):
"""
Function to extract parameters from model name.
It handles names with 'b/B' for billions and 'm/M' for millions.
"""
# pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
match = pattern.search(model_name)
if match:
num, magnitude = match.groups()
num = float(num)
# convert millions to billions
if magnitude.lower() == 'm':
num /= 1000
return num
# return NaN if no match
return np.nan
def process_data(self):
full_model_name_count = 0
full_model_names = []
dataframes = []
organization_names = []
for filename in self._find_files(self.directory, self.pattern):
# try:
raw_data = self._read_and_transform_data(filename)
split_path = filename.split('/')
model_name = split_path[2]
organization_name = split_path[1]
full_model_name = f'{organization_name}/{model_name}'
full_model_name_count += 1
# print count every 100 models
if full_model_name_count % 100 == 0:
print(full_model_name_count)
cleaned_data = self._cleanup_dataframe(raw_data, model_name)
# mc1 = self._extract_mc1(raw_data, full_model_name)
# mc2 = self._extract_mc2(raw_data, full_model_name)
# cleaned_data = pd.concat([cleaned_data, mc1])
# cleaned_data = pd.concat([cleaned_data, mc2])
organization_names.append(organization_name)
full_model_names.append(full_model_name)
dataframes.append(cleaned_data)
# except Exception as e:
# # logging.error(f'Error processing {filename}')
# # logging.error(f'The error is: {e}')
# print(f'Error processing {filename}')
# print(f'The error is: {e}')
# continue
data = pd.concat(dataframes, axis=1).transpose()
# Add organization column
# data['organization'] = organization_names
print("full_model_names")
print(len(full_model_names))
print("organization_names")
print(len(organization_name))
data['full_model_name'] = full_model_names
# Add Model Name and rearrange columns
data['Model Name'] = data.index
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
data = data[cols]
# Remove the 'Model Name' column
data = data.drop(columns=['Model Name'])
# Add average column
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
# Reorder columns to move 'MMLU_average' to the third position
cols = data.columns.tolist()
cols = cols[:2] + cols[-1:] + cols[2:-1]
data = data[cols]
# Add parameter count column using extract_parameters function
data['Parameters'] = data.index.to_series().apply(self._extract_parameters)
# move the parameters column to the front of the dataframe
cols = data.columns.tolist()
cols = cols[-1:] + cols[:-1]
print(cols)
data = data[cols]
new_columns = ['full_model_name'] + [col for col in data.columns if col != 'full_model_name']
data = data.reindex(columns=new_columns)
# # Reorder columns to move 'organization' to the second position
# cols = data.columns.tolist()
# cols = cols[-1:] + cols[:-1]
# data = data[cols]
# remove extreme outliers from column harness|truthfulqa:mc1
# data = self._remove_mc1_outliers(data)
data = self.manual_removal_of_models(data)
# drop rows if MMLU_abstract_algebra is NaN
data = data.dropna(subset=['MMLU_abstract_algebra'])
# add a URL column that takes https://huggingface.co/ + full_model_name
data['URL'] = 'https://huggingface.co/' + data['full_model_name']
new_columns = ['URL'] + [col for col in data.columns if col != 'URL']
data = data.reindex(columns=new_columns)
# drop columns drop|3 gsm8k and winogrande
data = data.drop(columns=['drop|3', 'gsm8k', 'winogrande'])
# # Drop specific columns
data = data.drop(columns=['all', 'truthfulqa:mc|0'])
# save to csv with the current date as part of the filename
data.to_csv(f'processed_data_{pd.Timestamp.now().strftime("%Y-%m-%d")}.csv')
return data
def manual_removal_of_models(self, df):
# remove models verified to be trained on evaluation data
# load the list of models
with open('contaminated_models.txt') as f:
contaminated_models = f.read().splitlines()
# remove the models from the dataframe
df = df[~df.index.isin(contaminated_models)]
return df
def rank_data(self):
# add rank for each column to the dataframe
# copy the data dataframe to avoid modifying the original dataframe
rank_data = self.data.copy()
for col in list(rank_data.columns):
rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')
return rank_data
def get_data(self, selected_models):
return self.data[self.data.index.isin(selected_models)]