Corey Morris
Modified download CSV feature so that the index column now has a title of model name
6a7ad7c
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from result_data_processor import ResultDataProcessor | |
data_provider = ResultDataProcessor() | |
st.title('Model Evaluation Results including MMLU by task') | |
filters = st.checkbox('Select Models and Evaluations') | |
# Create defaults for selected columns and models | |
selected_columns = data_provider.data.columns.tolist() | |
selected_models = data_provider.data.index.tolist() | |
if filters: | |
# Create checkboxes for each column | |
selected_columns = st.multiselect( | |
'Select Columns', | |
data_provider.data.columns.tolist(), | |
default=selected_columns | |
) | |
selected_models = st.multiselect( | |
'Select Models', | |
data_provider.data.index.tolist(), | |
default=selected_models | |
) | |
# Get the filtered data | |
st.header('Sortable table') | |
filtered_data = data_provider.get_data(selected_models) | |
# sort the table by the MMLU_average column | |
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) | |
st.dataframe(filtered_data[selected_columns]) | |
# CSV download | |
# name the index to include in the csv download | |
filtered_data.index.name = "Model Name" | |
csv = filtered_data.to_csv(index=True) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name="model_evaluation_results.csv", | |
mime="text/csv", | |
) | |
def create_plot(df, arc_column, moral_column, models=None): | |
if models is not None: | |
df = df[df.index.isin(models)] | |
# remove rows with NaN values | |
df = df.dropna(subset=[arc_column, moral_column]) | |
plot_data = pd.DataFrame({ | |
'Model': df.index, | |
arc_column: df[arc_column], | |
moral_column: df[moral_column], | |
}) | |
plot_data['color'] = 'purple' | |
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols") | |
fig.update_layout(showlegend=False, | |
xaxis_title=arc_column, | |
yaxis_title=moral_column, | |
xaxis = dict(), | |
yaxis = dict()) | |
# Add a dashed line at 0.25 for the moral columns | |
x_min = df[arc_column].min() | |
x_max = df[arc_column].max() | |
y_min = df[moral_column].min() | |
y_max = df[moral_column].max() | |
if arc_column.startswith('MMLU'): | |
fig.add_shape( | |
type='line', | |
x0=0.25, x1=0.25, | |
y0=y_min, y1=y_max, | |
line=dict( | |
color='red', | |
width=2, | |
dash='dash' | |
) | |
) | |
if moral_column.startswith('MMLU'): | |
fig.add_shape( | |
type='line', | |
x0=x_min, x1=x_max, | |
y0=0.25, y1=0.25, | |
line=dict( | |
color='red', | |
width=2, | |
dash='dash' | |
) | |
) | |
return fig | |
# Custom scatter plots | |
st.header('Custom scatter plots') | |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) | |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1) | |
if selected_x_column != selected_y_column: # Avoid creating a plot with the same column on both axes | |
fig = create_plot(filtered_data, selected_x_column, selected_y_column) | |
st.plotly_chart(fig) | |
else: | |
st.write("Please select different columns for the x and y axes.") | |
# end of custom scatter plots | |
st.header('Overall evaluation comparisons') | |
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_average') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'hellaswag|10', 'MMLU_average') | |
st.plotly_chart(fig) | |
st.header('Top 50 models on MMLU_average') | |
top_50 = filtered_data.nlargest(50, 'MMLU_average') | |
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average') | |
st.plotly_chart(fig) | |
st.header('Moral Reasoning') | |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'MMLU_moral_disputes', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns) | |
st.plotly_chart(fig) | |
fig = px.histogram(filtered_data, x="MMLU_moral_disputes", marginal="rug", hover_data=filtered_data.columns) | |
st.plotly_chart(fig) | |
st.markdown("**Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations**") | |
st.markdown(""" | |
# References | |
1. Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf. (2023). *Open LLM Leaderboard*. Hugging Face. [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | |
2. Gao, Leo et al. (2021). *A framework for few-shot language model evaluation*. Zenodo. [link](https://doi.org/10.5281/zenodo.5371628) | |
3. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord. (2018). *Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge*. arXiv. [link](https://arxiv.org/abs/1803.05457) | |
4. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi. (2019). *HellaSwag: Can a Machine Really Finish Your Sentence?*. arXiv. [link](https://arxiv.org/abs/1905.07830) | |
5. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt. (2021). *Measuring Massive Multitask Language Understanding*. arXiv. [link](https://arxiv.org/abs/2009.03300) | |
6. Stephanie Lin, Jacob Hilton, Owain Evans. (2022). *TruthfulQA: Measuring How Models Mimic Human Falsehoods*. arXiv. [link](https://arxiv.org/abs/2109.07958) | |
""") | |