File size: 8,289 Bytes
843a5ef
 
 
 
dcadab7
 
d96fdf9
 
 
843a5ef
 
ee5ac8e
d96fdf9
ee5ac8e
d96fdf9
ee5ac8e
 
843a5ef
31bed1a
843a5ef
794b32b
 
ee5ac8e
 
 
 
794b32b
68bce52
794b32b
 
 
 
ee5ac8e
 
 
 
 
 
 
 
 
 
 
 
 
abac22e
 
 
 
 
 
 
 
 
 
 
 
 
 
e03b231
 
 
 
 
 
 
 
 
 
 
abac22e
 
dcadab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843a5ef
59c6dd2
 
6d41115
e79bcf3
6d41115
59c6dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d41115
843a5ef
ee5ac8e
e79bcf3
 
59c6dd2
 
 
 
 
 
e79bcf3
ee5ac8e
843a5ef
 
 
 
 
ee5ac8e
 
 
 
843a5ef
 
ee5ac8e
843a5ef
 
 
 
7d69bda
 
 
59c6dd2
dcadab7
 
 
 
 
 
 
7d69bda
 
 
59c6dd2
 
 
 
 
 
 
 
dcadab7
e03b231
59c6dd2
e03b231
a5840fb
 
1a1910c
59c6dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a1910c
 
dcadab7
31bed1a
a5840fb
 
 
 
 
 
 
 
 
 
31bed1a
 
 
 
 
 
 
 
ee5ac8e
843a5ef
ee5ac8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import pandas as pd
import os
import fnmatch
import json
import re
import numpy as np
import logging

logging.basicConfig(filename='error_log.log', level=logging.ERROR)

class ResultDataProcessor:
    

    def __init__(self, directory='results', pattern='results*.json'):
        
        self.directory = directory
        self.pattern = pattern
        self.data = self.process_data()
        self.ranked_data = self.rank_data()

    def _find_files(self, directory='results', pattern='results*.json'):
        matching_files = {}
        for root, dirs, files in os.walk(directory):
            for basename in files:
                if fnmatch.fnmatch(basename, pattern):
                    filename = os.path.join(root, basename)
                    matching_files[root] = filename
        # TODO decide on removing this since I am catching the error when processing the file
        matching_files = {key: value for key, value in matching_files.items() if 'gpt-j-6b' not in key}
        matching_files = list(matching_files.values())
        return matching_files

    def _read_and_transform_data(self, filename):
        with open(filename) as f:
            data = json.load(f)
        df = pd.DataFrame(data['results']).T
        return df
    
    def _cleanup_dataframe(self, df, model_name):
        df = df.rename(columns={'acc': model_name})
        df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
                          .str.replace('harness\|', '', regex=True)
                          .str.replace('\|5', '', regex=True))
        return df[[model_name]]
    
    def _extract_mc1(self, df, model_name):
        df = df.rename(columns={'mc1': model_name})
        # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1
        df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True))
        # just return the harness|truthfulqa:mc1 row
        df = df.loc[['harness|truthfulqa:mc1']]
        return df[[model_name]]
    
    def _extract_mc2(self, df, model_name):
        # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2
        df = df.rename(columns={'mc2': model_name})
        df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True))
        df = df.loc[['harness|truthfulqa:mc2']]
        return df[[model_name]]
    
    # remove extreme outliers from column harness|truthfulqa:mc1
    def _remove_mc1_outliers(self, df):
        mc1 = df['harness|truthfulqa:mc1']
        # Identify the outliers
        # outliers_condition = mc1 > mc1.quantile(.95)
        outliers_condition = mc1 == 1.0
        # Replace the outliers with NaN
        df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan
        return df


    
    @staticmethod
    def _extract_parameters(model_name):
        """
        Function to extract parameters from model name.
        It handles names with 'b/B' for billions and 'm/M' for millions. 
        """
        # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions)
        pattern = re.compile(r'(\d+\.?\d*)([bBmM])')
        
        match = pattern.search(model_name)
        
        if match:
            num, magnitude = match.groups()
            num = float(num)
            
            # convert millions to billions
            if magnitude.lower() == 'm':
                num /= 1000
            
            return num
        
        # return NaN if no match
        return np.nan

    
    def process_data(self):
        full_model_name_count = 0
        full_model_names = []
        dataframes = []
        organization_names = []
        for filename in self._find_files(self.directory, self.pattern):
            # try:
            raw_data = self._read_and_transform_data(filename)
            split_path = filename.split('/')
            model_name = split_path[2]
            organization_name = split_path[1]
            full_model_name = f'{organization_name}/{model_name}'
            full_model_name_count += 1
            # print count every 100 models
            if full_model_name_count % 100 == 0:
                print(full_model_name_count)

            cleaned_data = self._cleanup_dataframe(raw_data, model_name)
            # mc1 = self._extract_mc1(raw_data, full_model_name)
            # mc2 = self._extract_mc2(raw_data, full_model_name)
            # cleaned_data = pd.concat([cleaned_data, mc1])
            # cleaned_data = pd.concat([cleaned_data, mc2])
            organization_names.append(organization_name)
            full_model_names.append(full_model_name)
            dataframes.append(cleaned_data)
            # except Exception as e:
            #     # logging.error(f'Error processing {filename}')
            #     # logging.error(f'The error is: {e}')
            #     print(f'Error processing {filename}')
            #     print(f'The error is: {e}')
            #     continue


        data = pd.concat(dataframes, axis=1).transpose()

        # Add organization column
        # data['organization'] = organization_names
        print("full_model_names")
        print(len(full_model_names))
        print("organization_names")
        print(len(organization_name))
        data['full_model_name'] = full_model_names

        # Add Model Name and rearrange columns
        data['Model Name'] = data.index
        cols = data.columns.tolist()
        cols = cols[-1:] + cols[:-1]
        data = data[cols]

        # Remove the 'Model Name' column
        data = data.drop(columns=['Model Name'])
        
        # Add average column
        data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)

        # Reorder columns to move 'MMLU_average' to the third position
        cols = data.columns.tolist()
        cols = cols[:2] + cols[-1:] + cols[2:-1]
        data = data[cols]






        # Add parameter count column using extract_parameters function
        data['Parameters'] = data.index.to_series().apply(self._extract_parameters)

        # move the parameters column to the front of the dataframe
        cols = data.columns.tolist()
        cols = cols[-1:] + cols[:-1]
        print(cols)
        data = data[cols]


        new_columns = ['full_model_name'] + [col for col in data.columns if col != 'full_model_name']
        data = data.reindex(columns=new_columns)

        # # Reorder columns to move 'organization' to the second position
        # cols = data.columns.tolist()
        # cols = cols[-1:] + cols[:-1]
        # data = data[cols]

        # remove extreme outliers from column harness|truthfulqa:mc1
        # data = self._remove_mc1_outliers(data)

        data = self.manual_removal_of_models(data)


        # drop rows if MMLU_abstract_algebra is NaN
        data = data.dropna(subset=['MMLU_abstract_algebra'])

        # add a URL column that takes https://huggingface.co/ + full_model_name
        data['URL'] = 'https://huggingface.co/' + data['full_model_name']

        new_columns = ['URL'] + [col for col in data.columns if col != 'URL']
        data = data.reindex(columns=new_columns)

        # drop columns drop|3 gsm8k and winogrande
        data = data.drop(columns=['drop|3', 'gsm8k', 'winogrande'])
        # # Drop specific columns
        data = data.drop(columns=['all', 'truthfulqa:mc|0'])

        # save to csv with the current date as part of the filename
        data.to_csv(f'processed_data_{pd.Timestamp.now().strftime("%Y-%m-%d")}.csv')
        
        return data
    
    def manual_removal_of_models(self, df):
    # remove models verified to be trained on evaluation data
        # load the list of models
        with open('contaminated_models.txt') as f:
            contaminated_models = f.read().splitlines()
        # remove the models from the dataframe
        df = df[~df.index.isin(contaminated_models)]
        return df

    
    def rank_data(self):
        # add rank for each column to the dataframe
        # copy the data dataframe to avoid modifying the original dataframe
        rank_data = self.data.copy()
        for col in list(rank_data.columns):
            rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min')

        return rank_data

    def get_data(self, selected_models):
        return self.data[self.data.index.isin(selected_models)]