Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
os.system("pip install opencv-python")
|
3 |
# os.system("pip uninstall -y gradio")
|
4 |
# os.system("pip install gradio==3.41.0")
|
5 |
|
@@ -206,7 +205,6 @@ with gr.Blocks() as demo:
|
|
206 |
|
207 |
segment_button = gr.Button("1.1 Run segmentation")
|
208 |
|
209 |
-
text_button = gr.Button("Waiting 1.1 to complete",visible = False)
|
210 |
|
211 |
|
212 |
flag = gr.State(False)
|
@@ -226,7 +224,6 @@ with gr.Blocks() as demo:
|
|
226 |
|
227 |
|
228 |
|
229 |
-
#canvas.upload(image_change, inputs=[], outputs=[text_button])
|
230 |
|
231 |
|
232 |
with gr.Tab(label="2 Optimization"):
|
@@ -238,11 +235,11 @@ with gr.Blocks() as demo:
|
|
238 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
239 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
240 |
num_tokens_global = num_tokens
|
241 |
-
embedding_learning_rate = gr.Textbox(value="0.
|
242 |
-
max_emb_train_steps = gr.Number(value="
|
243 |
|
244 |
-
diffusion_model_learning_rate = gr.Textbox(value="0.
|
245 |
-
max_diffusion_train_steps = gr.Number(value="
|
246 |
|
247 |
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
248 |
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
@@ -261,7 +258,7 @@ with gr.Blocks() as demo:
|
|
261 |
train_batch_size,
|
262 |
gradient_accumulation_steps,
|
263 |
):
|
264 |
-
|
265 |
run_optimization = partial(
|
266 |
run_main,
|
267 |
mask_np_list=mask_np_list,
|
@@ -278,8 +275,8 @@ with gr.Blocks() as demo:
|
|
278 |
run_optimization()
|
279 |
print('finish')
|
280 |
return "Optimization finished!"
|
281 |
-
|
282 |
-
|
283 |
|
284 |
|
285 |
def immediate_update():
|
@@ -378,8 +375,6 @@ with gr.Blocks() as demo:
|
|
378 |
outputs=[slider2]
|
379 |
)
|
380 |
|
381 |
-
#text_button.click(load_image_ui, [false] ,
|
382 |
-
# [image_loaded, segmentation, mask_np_list, mask_label_list, canvas, slider, slider2] )
|
383 |
|
384 |
segment_button.click(run_segmentation_wrapper,
|
385 |
[canvas] ,
|
|
|
1 |
import os
|
|
|
2 |
# os.system("pip uninstall -y gradio")
|
3 |
# os.system("pip install gradio==3.41.0")
|
4 |
|
|
|
205 |
|
206 |
segment_button = gr.Button("1.1 Run segmentation")
|
207 |
|
|
|
208 |
|
209 |
|
210 |
flag = gr.State(False)
|
|
|
224 |
|
225 |
|
226 |
|
|
|
227 |
|
228 |
|
229 |
with gr.Tab(label="2 Optimization"):
|
|
|
235 |
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
236 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
237 |
num_tokens_global = num_tokens
|
238 |
+
embedding_learning_rate = gr.Textbox(value="0.00005", label="Embedding optimization: Learning rate", interactive= True )
|
239 |
+
max_emb_train_steps = gr.Number(value="100", label="embedding optimization: Training steps", interactive= True )
|
240 |
|
241 |
+
diffusion_model_learning_rate = gr.Textbox(value="0.00002", label="UNet Optimization: Learning rate", interactive= True )
|
242 |
+
max_diffusion_train_steps = gr.Number(value="100", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
243 |
|
244 |
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
245 |
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
|
|
258 |
train_batch_size,
|
259 |
gradient_accumulation_steps,
|
260 |
):
|
261 |
+
try:
|
262 |
run_optimization = partial(
|
263 |
run_main,
|
264 |
mask_np_list=mask_np_list,
|
|
|
275 |
run_optimization()
|
276 |
print('finish')
|
277 |
return "Optimization finished!"
|
278 |
+
except:
|
279 |
+
return "CUDA out of memory, use a smaller batch size or try another picture."
|
280 |
|
281 |
|
282 |
def immediate_update():
|
|
|
375 |
outputs=[slider2]
|
376 |
)
|
377 |
|
|
|
|
|
378 |
|
379 |
segment_button.click(run_segmentation_wrapper,
|
380 |
[canvas] ,
|