Spaces:
Running
on
Zero
Running
on
Zero
second
Browse files- .gitignore +1 -0
- app copy.py +349 -0
- app.py +60 -66
- segment.py +25 -23
.gitignore
CHANGED
@@ -4,6 +4,7 @@ example1_example2_512/
|
|
4 |
example1_example2_1024/
|
5 |
example1/
|
6 |
old/
|
|
|
7 |
|
8 |
out_active.png
|
9 |
out_mask.png
|
|
|
4 |
example1_example2_1024/
|
5 |
example1/
|
6 |
old/
|
7 |
+
example_tmp/
|
8 |
|
9 |
out_active.png
|
10 |
out_mask.png
|
app copy.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import copy
|
4 |
+
from PIL import Image
|
5 |
+
import matplotlib
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
from utils import load_mask, load_mask_edit
|
9 |
+
from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean
|
10 |
+
from pathlib import Path
|
11 |
+
import subprocess
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
LENGTH=512 #length of the square area displaying/editing images
|
15 |
+
TRANSPARENCY = 150 # transparency of the mask in display
|
16 |
+
|
17 |
+
def add_mask(mask_np_list_updated, mask_label_list):
|
18 |
+
mask_new = np.zeros_like(mask_np_list_updated[0])
|
19 |
+
mask_np_list_updated.append(mask_new)
|
20 |
+
mask_label_list.append("new")
|
21 |
+
return mask_np_list_updated, mask_label_list
|
22 |
+
|
23 |
+
def create_segmentation(mask_np_list):
|
24 |
+
viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list))
|
25 |
+
segmentation = 0
|
26 |
+
for i, m in enumerate(mask_np_list):
|
27 |
+
color = matplotlib.colors.to_rgb(viridis(i))
|
28 |
+
color_mat = np.ones_like(m)
|
29 |
+
color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2)
|
30 |
+
color_mat = color_mat * m[:,:,np.newaxis]
|
31 |
+
segmentation += color_mat
|
32 |
+
segmentation = Image.fromarray(np.uint8(segmentation*255))
|
33 |
+
return segmentation
|
34 |
+
|
35 |
+
def load_mask_ui(input_folder,load_edit = False):
|
36 |
+
if not load_edit:
|
37 |
+
mask_list, mask_label_list = load_mask(input_folder)
|
38 |
+
else:
|
39 |
+
mask_list, mask_label_list = load_mask_edit(input_folder)
|
40 |
+
|
41 |
+
mask_np_list = []
|
42 |
+
for m in mask_list:
|
43 |
+
mask_np_list. append( m.cpu().numpy())
|
44 |
+
|
45 |
+
return mask_np_list, mask_label_list
|
46 |
+
|
47 |
+
def load_image_ui(input_folder, load_edit):
|
48 |
+
try:
|
49 |
+
for img_path in Path(input_folder).iterdir():
|
50 |
+
if img_path.name in ["img.png", "img_1024.png", "img_512.png"]:
|
51 |
+
image = Image.open(img_path)
|
52 |
+
mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit)
|
53 |
+
image = image.convert('RGB')
|
54 |
+
segmentation = create_segmentation(mask_np_list)
|
55 |
+
return image, segmentation, mask_np_list, mask_label_list, image
|
56 |
+
except:
|
57 |
+
print("Image folder invalid: The folder should contain image.png")
|
58 |
+
return None, None, None, None, None
|
59 |
+
|
60 |
+
def run_segmentation(input_folder):
|
61 |
+
subprocess.run(["python", "segment.py" , "--name={}".format(input_folder)])
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
def run_edit_text(
|
67 |
+
input_folder,
|
68 |
+
num_tokens,
|
69 |
+
num_sampling_steps,
|
70 |
+
strength,
|
71 |
+
edge_thickness,
|
72 |
+
tgt_prompt,
|
73 |
+
tgt_idx,
|
74 |
+
guidance_scale
|
75 |
+
):
|
76 |
+
subprocess.run(["python",
|
77 |
+
"main.py" ,
|
78 |
+
"--text",
|
79 |
+
"--name={}".format(input_folder),
|
80 |
+
"--dpm={}".format("sd"),
|
81 |
+
"--resolution={}".format(512),
|
82 |
+
"--load_trained",
|
83 |
+
"--num_tokens={}".format(num_tokens),
|
84 |
+
"--seed={}".format(2024),
|
85 |
+
"--guidance_scale={}".format(guidance_scale),
|
86 |
+
"--num_sampling_step={}".format(num_sampling_steps),
|
87 |
+
"--strength={}".format(strength),
|
88 |
+
"--edge_thickness={}".format(edge_thickness),
|
89 |
+
"--num_imgs={}".format(2),
|
90 |
+
"--tgt_prompt={}".format(tgt_prompt) ,
|
91 |
+
"--tgt_index={}".format(tgt_idx)
|
92 |
+
])
|
93 |
+
|
94 |
+
return Image.open(os.path.join(input_folder, "text", "out_text_0.png"))
|
95 |
+
|
96 |
+
|
97 |
+
def run_optimization(
|
98 |
+
input_folder,
|
99 |
+
num_tokens,
|
100 |
+
embedding_learning_rate,
|
101 |
+
max_emb_train_steps,
|
102 |
+
diffusion_model_learning_rate,
|
103 |
+
max_diffusion_train_steps,
|
104 |
+
train_batch_size,
|
105 |
+
gradient_accumulation_steps
|
106 |
+
):
|
107 |
+
subprocess.run(["python",
|
108 |
+
"main.py" ,
|
109 |
+
"--name={}".format(input_folder),
|
110 |
+
"--dpm={}".format("sd"),
|
111 |
+
"--resolution={}".format(512),
|
112 |
+
"--num_tokens={}".format(num_tokens),
|
113 |
+
"--embedding_learning_rate={}".format(embedding_learning_rate),
|
114 |
+
"--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate),
|
115 |
+
"--max_emb_train_steps={}".format(max_emb_train_steps),
|
116 |
+
"--max_diffusion_train_steps={}".format(max_diffusion_train_steps),
|
117 |
+
"--train_batch_size={}".format(train_batch_size),
|
118 |
+
"--gradient_accumulation_steps={}".format(gradient_accumulation_steps)
|
119 |
+
|
120 |
+
])
|
121 |
+
return
|
122 |
+
|
123 |
+
|
124 |
+
def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128):
|
125 |
+
backimg_solid_np = np.array(backimg)
|
126 |
+
bimg = backimg.copy()
|
127 |
+
fimg = foreimg.copy()
|
128 |
+
fimg.putalpha(transparency)
|
129 |
+
bimg.paste(fimg, (0,0), fimg)
|
130 |
+
|
131 |
+
bimg_np = np.array(bimg)
|
132 |
+
mask_np = mask_np[:,:,np.newaxis]
|
133 |
+
try:
|
134 |
+
new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np
|
135 |
+
return Image.fromarray(new_img_np)
|
136 |
+
except:
|
137 |
+
import pdb; pdb.set_trace()
|
138 |
+
|
139 |
+
def show_segmentation(image, segmentation, flag):
|
140 |
+
if flag is False:
|
141 |
+
flag = True
|
142 |
+
mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8)
|
143 |
+
image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY)
|
144 |
+
return image_edit, flag
|
145 |
+
else:
|
146 |
+
flag = False
|
147 |
+
return image,flag
|
148 |
+
|
149 |
+
def edit_mask_add(canvas, image, idx, mask_np_list):
|
150 |
+
mask_sel = mask_np_list[idx]
|
151 |
+
mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.)
|
152 |
+
mask_np_list_updated = []
|
153 |
+
for midx, m in enumerate(mask_np_list):
|
154 |
+
if midx == idx:
|
155 |
+
mask_np_list_updated.append(mask_union(mask_sel, mask_new))
|
156 |
+
else:
|
157 |
+
mask_np_list_updated.append(m)
|
158 |
+
|
159 |
+
priority_list = [0 for _ in range(len(mask_np_list_updated))]
|
160 |
+
priority_list[idx] = 1
|
161 |
+
mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list)
|
162 |
+
mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8)
|
163 |
+
segmentation = create_segmentation(mask_np_list_updated)
|
164 |
+
image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY)
|
165 |
+
return mask_np_list_updated, image_edit
|
166 |
+
|
167 |
+
def slider_release(index, image, mask_np_list_updated, mask_label_list):
|
168 |
+
if index > len(mask_np_list_updated):
|
169 |
+
return image, "out of range"
|
170 |
+
else:
|
171 |
+
mask_np = mask_np_list_updated[index]
|
172 |
+
mask_label = mask_label_list[index]
|
173 |
+
segmentation = create_segmentation(mask_np_list_updated)
|
174 |
+
new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY)
|
175 |
+
return new_image, mask_label
|
176 |
+
|
177 |
+
def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder):
|
178 |
+
try:
|
179 |
+
assert np.all(sum(mask_np_list_updated)==1)
|
180 |
+
except:
|
181 |
+
print("please check mask")
|
182 |
+
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
183 |
+
import pdb; pdb.set_trace()
|
184 |
+
|
185 |
+
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
|
186 |
+
# np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask )
|
187 |
+
np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask )
|
188 |
+
savepath = os.path.join(input_folder, "seg_current.png")
|
189 |
+
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
190 |
+
|
191 |
+
def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder):
|
192 |
+
try:
|
193 |
+
assert np.all(sum(mask_np_list_updated)==1)
|
194 |
+
except:
|
195 |
+
print("please check mask")
|
196 |
+
# plt.imsave( "out_mask.png", mask_list_edit[0])
|
197 |
+
import pdb; pdb.set_trace()
|
198 |
+
for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)):
|
199 |
+
np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask)
|
200 |
+
savepath = os.path.join(input_folder, "seg_edited.png")
|
201 |
+
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
202 |
+
|
203 |
+
with gr.Blocks() as demo:
|
204 |
+
image = gr.State() # store mask
|
205 |
+
image_loaded = gr.State()
|
206 |
+
segmentation = gr.State()
|
207 |
+
|
208 |
+
mask_np_list = gr.State([])
|
209 |
+
mask_label_list = gr.State([])
|
210 |
+
mask_np_list_updated = gr.State([])
|
211 |
+
true = gr.State(True)
|
212 |
+
false = gr.State(False)
|
213 |
+
|
214 |
+
|
215 |
+
with gr.Row():
|
216 |
+
gr.Markdown("""# D-Edit""")
|
217 |
+
|
218 |
+
with gr.Tab(label="1 Edit mask"):
|
219 |
+
with gr.Row():
|
220 |
+
with gr.Column():
|
221 |
+
canvas = gr.Image(value = None, type="numpy", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
222 |
+
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
223 |
+
|
224 |
+
segment_button = gr.Button("1.1 Run segmentation")
|
225 |
+
segment_button.click(run_segmentation,
|
226 |
+
[input_folder] ,
|
227 |
+
[] )
|
228 |
+
|
229 |
+
|
230 |
+
text_button = gr.Button("1.2 Load original masks")
|
231 |
+
text_button.click(load_image_ui,
|
232 |
+
[input_folder, false] ,
|
233 |
+
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
234 |
+
|
235 |
+
load_edit_button = gr.Button("1.2 Load edited masks")
|
236 |
+
load_edit_button.click(load_image_ui,
|
237 |
+
[input_folder, true] ,
|
238 |
+
[image_loaded, segmentation, mask_np_list, mask_label_list, canvas] )
|
239 |
+
|
240 |
+
show_segment = gr.Checkbox(label = "Show Segmentation")
|
241 |
+
|
242 |
+
flag = gr.State(False)
|
243 |
+
show_segment.select(show_segmentation,
|
244 |
+
[image_loaded, segmentation, flag],
|
245 |
+
[canvas, flag])
|
246 |
+
|
247 |
+
mask_np_list_updated = copy.deepcopy(mask_np_list)
|
248 |
+
|
249 |
+
with gr.Column():
|
250 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Draw Mask</p>""")
|
251 |
+
slider = gr.Slider(0, 20, step=1, interactive=True)
|
252 |
+
label = gr.Textbox()
|
253 |
+
slider.release(slider_release,
|
254 |
+
inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list],
|
255 |
+
outputs= [canvas, label]
|
256 |
+
)
|
257 |
+
add_button = gr.Button("Add")
|
258 |
+
add_button.click( edit_mask_add,
|
259 |
+
[canvas, image_loaded, slider, mask_np_list_updated] ,
|
260 |
+
[mask_np_list_updated, canvas]
|
261 |
+
)
|
262 |
+
|
263 |
+
save_button2 = gr.Button("Set and Save as edited masks")
|
264 |
+
save_button2.click( save_as_edit_mask,
|
265 |
+
[mask_np_list_updated, mask_label_list, input_folder] ,
|
266 |
+
[] )
|
267 |
+
|
268 |
+
save_button = gr.Button("Set and Save as original masks")
|
269 |
+
save_button.click( save_as_orig_mask,
|
270 |
+
[mask_np_list_updated, mask_label_list, input_folder] ,
|
271 |
+
[] )
|
272 |
+
|
273 |
+
back_button = gr.Button("Back to current seg")
|
274 |
+
back_button.click( load_mask_ui,
|
275 |
+
[input_folder] ,
|
276 |
+
[ mask_np_list_updated,mask_label_list] )
|
277 |
+
|
278 |
+
add_mask_button = gr.Button("Add new empty mask")
|
279 |
+
add_mask_button.click(add_mask,
|
280 |
+
[mask_np_list_updated, mask_label_list] ,
|
281 |
+
[mask_np_list_updated, mask_label_list] )
|
282 |
+
|
283 |
+
with gr.Tab(label="2 Optimization"):
|
284 |
+
with gr.Row():
|
285 |
+
with gr.Column():
|
286 |
+
canvas_opt = gr.Image(value = canvas.value, type="pil", label="Loaded Image", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
287 |
+
|
288 |
+
with gr.Column():
|
289 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
290 |
+
num_tokens = gr.Textbox(value="5", label="num tokens to represent each object", interactive= True)
|
291 |
+
embedding_learning_rate = gr.Textbox(value="1e-4", label="Embedding optimization: Learning rate", interactive= True )
|
292 |
+
max_emb_train_steps = gr.Textbox(value="500", label="embedding optimization: Training steps", interactive= True )
|
293 |
+
|
294 |
+
diffusion_model_learning_rate = gr.Textbox(value="5e-5", label="UNet Optimization: Learning rate", interactive= True )
|
295 |
+
max_diffusion_train_steps = gr.Textbox(value="500", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
296 |
+
|
297 |
+
train_batch_size = gr.Textbox(value="5", label="Batch size", interactive= True )
|
298 |
+
gradient_accumulation_steps=gr.Textbox(value="5", label="Gradient accumulation", interactive= True )
|
299 |
+
|
300 |
+
add_button = gr.Button("Run optimization")
|
301 |
+
add_button.click(run_optimization,
|
302 |
+
inputs = [
|
303 |
+
input_folder,
|
304 |
+
num_tokens,
|
305 |
+
embedding_learning_rate,
|
306 |
+
max_emb_train_steps,
|
307 |
+
diffusion_model_learning_rate,
|
308 |
+
max_diffusion_train_steps,
|
309 |
+
train_batch_size,gradient_accumulation_steps
|
310 |
+
],
|
311 |
+
outputs = []
|
312 |
+
)
|
313 |
+
|
314 |
+
|
315 |
+
with gr.Tab(label="3 Editing"):
|
316 |
+
with gr.Tab(label="3.1 Text-based editing"):
|
317 |
+
canvas_text_edit = gr.State() # store mask
|
318 |
+
with gr.Row():
|
319 |
+
with gr.Column():
|
320 |
+
canvas_text_edit = gr.Image(value = None, label="Editing results", show_label=True, height=LENGTH, width=LENGTH)
|
321 |
+
# canvas_text_edit = gr.Gallery(label = "Edited results")
|
322 |
+
|
323 |
+
with gr.Column():
|
324 |
+
gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
|
325 |
+
|
326 |
+
tgt_prompt = gr.Textbox(value="Dog", label="Editing: Text prompt", interactive= True )
|
327 |
+
tgt_idx = gr.Textbox(value="0", label="Editing: Object index", interactive= True )
|
328 |
+
guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
|
329 |
+
num_sampling_steps = gr.Textbox(value="50", label="Editing: Sampling steps", interactive= True )
|
330 |
+
edge_thickness = gr.Textbox(value="10", label="Editing: Edge thickness", interactive= True )
|
331 |
+
strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
332 |
+
|
333 |
+
add_button = gr.Button("Run Editing")
|
334 |
+
add_button.click(run_edit_text,
|
335 |
+
inputs = [
|
336 |
+
input_folder,
|
337 |
+
num_tokens,
|
338 |
+
num_sampling_steps,
|
339 |
+
strength,
|
340 |
+
edge_thickness,
|
341 |
+
tgt_prompt,
|
342 |
+
tgt_idx,
|
343 |
+
guidance_scale
|
344 |
+
],
|
345 |
+
outputs = [canvas_text_edit]
|
346 |
+
)
|
347 |
+
|
348 |
+
|
349 |
+
demo.queue().launch(share=True, debug=True)
|
app.py
CHANGED
@@ -57,12 +57,6 @@ def load_image_ui(input_folder, load_edit):
|
|
57 |
print("Image folder invalid: The folder should contain image.png")
|
58 |
return None, None, None, None, None
|
59 |
|
60 |
-
def run_segmentation(input_folder):
|
61 |
-
subprocess.run(["python", "segment.py" , "--name={}".format(input_folder)])
|
62 |
-
return
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
def run_edit_text(
|
67 |
input_folder,
|
68 |
num_tokens,
|
@@ -200,6 +194,8 @@ def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder):
|
|
200 |
savepath = os.path.join(input_folder, "seg_edited.png")
|
201 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
202 |
|
|
|
|
|
203 |
with gr.Blocks() as demo:
|
204 |
image = gr.State() # store mask
|
205 |
image_loaded = gr.State()
|
@@ -211,22 +207,20 @@ with gr.Blocks() as demo:
|
|
211 |
true = gr.State(True)
|
212 |
false = gr.State(False)
|
213 |
|
214 |
-
|
215 |
with gr.Row():
|
216 |
gr.Markdown("""# D-Edit""")
|
217 |
|
218 |
with gr.Tab(label="1 Edit mask"):
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
-
canvas = gr.Image(value = None, type="
|
222 |
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
223 |
|
224 |
segment_button = gr.Button("1.1 Run segmentation")
|
225 |
segment_button.click(run_segmentation,
|
226 |
-
[
|
227 |
[] )
|
228 |
-
|
229 |
-
|
230 |
text_button = gr.Button("1.2 Load original masks")
|
231 |
text_button.click(load_image_ui,
|
232 |
[input_folder, false] ,
|
@@ -280,70 +274,70 @@ with gr.Blocks() as demo:
|
|
280 |
[mask_np_list_updated, mask_label_list] ,
|
281 |
[mask_np_list_updated, mask_label_list] )
|
282 |
|
283 |
-
with gr.Tab(label="2 Optimization"):
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
|
294 |
-
|
295 |
-
|
296 |
|
297 |
-
|
298 |
-
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
|
314 |
|
315 |
-
with gr.Tab(label="3 Editing"):
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
|
323 |
-
|
324 |
-
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
|
348 |
|
349 |
demo.queue().launch(share=True, debug=True)
|
|
|
57 |
print("Image folder invalid: The folder should contain image.png")
|
58 |
return None, None, None, None, None
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def run_edit_text(
|
61 |
input_folder,
|
62 |
num_tokens,
|
|
|
194 |
savepath = os.path.join(input_folder, "seg_edited.png")
|
195 |
visualize_mask_list_clean(mask_np_list_updated, savepath)
|
196 |
|
197 |
+
|
198 |
+
from segment import run_segmentation
|
199 |
with gr.Blocks() as demo:
|
200 |
image = gr.State() # store mask
|
201 |
image_loaded = gr.State()
|
|
|
207 |
true = gr.State(True)
|
208 |
false = gr.State(False)
|
209 |
|
|
|
210 |
with gr.Row():
|
211 |
gr.Markdown("""# D-Edit""")
|
212 |
|
213 |
with gr.Tab(label="1 Edit mask"):
|
214 |
with gr.Row():
|
215 |
with gr.Column():
|
216 |
+
canvas = gr.Image(value = None, type="pil", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
217 |
input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, )
|
218 |
|
219 |
segment_button = gr.Button("1.1 Run segmentation")
|
220 |
segment_button.click(run_segmentation,
|
221 |
+
[canvas] ,
|
222 |
[] )
|
223 |
+
|
|
|
224 |
text_button = gr.Button("1.2 Load original masks")
|
225 |
text_button.click(load_image_ui,
|
226 |
[input_folder, false] ,
|
|
|
274 |
[mask_np_list_updated, mask_label_list] ,
|
275 |
[mask_np_list_updated, mask_label_list] )
|
276 |
|
277 |
+
# with gr.Tab(label="2 Optimization"):
|
278 |
+
# with gr.Row():
|
279 |
+
# with gr.Column():
|
280 |
+
# canvas_opt = gr.Image(value = canvas.value, type="pil", label="Loaded Image", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
281 |
|
282 |
+
# with gr.Column():
|
283 |
+
# gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""")
|
284 |
+
# num_tokens = gr.Textbox(value="5", label="num tokens to represent each object", interactive= True)
|
285 |
+
# embedding_learning_rate = gr.Textbox(value="1e-4", label="Embedding optimization: Learning rate", interactive= True )
|
286 |
+
# max_emb_train_steps = gr.Textbox(value="500", label="embedding optimization: Training steps", interactive= True )
|
287 |
|
288 |
+
# diffusion_model_learning_rate = gr.Textbox(value="5e-5", label="UNet Optimization: Learning rate", interactive= True )
|
289 |
+
# max_diffusion_train_steps = gr.Textbox(value="500", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
290 |
|
291 |
+
# train_batch_size = gr.Textbox(value="5", label="Batch size", interactive= True )
|
292 |
+
# gradient_accumulation_steps=gr.Textbox(value="5", label="Gradient accumulation", interactive= True )
|
293 |
|
294 |
+
# add_button = gr.Button("Run optimization")
|
295 |
+
# add_button.click(run_optimization,
|
296 |
+
# inputs = [
|
297 |
+
# input_folder,
|
298 |
+
# num_tokens,
|
299 |
+
# embedding_learning_rate,
|
300 |
+
# max_emb_train_steps,
|
301 |
+
# diffusion_model_learning_rate,
|
302 |
+
# max_diffusion_train_steps,
|
303 |
+
# train_batch_size,gradient_accumulation_steps
|
304 |
+
# ],
|
305 |
+
# outputs = []
|
306 |
+
# )
|
307 |
|
308 |
|
309 |
+
# with gr.Tab(label="3 Editing"):
|
310 |
+
# with gr.Tab(label="3.1 Text-based editing"):
|
311 |
+
# canvas_text_edit = gr.State() # store mask
|
312 |
+
# with gr.Row():
|
313 |
+
# with gr.Column():
|
314 |
+
# canvas_text_edit = gr.Image(value = None, label="Editing results", show_label=True, height=LENGTH, width=LENGTH)
|
315 |
+
# # canvas_text_edit = gr.Gallery(label = "Edited results")
|
316 |
|
317 |
+
# with gr.Column():
|
318 |
+
# gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""")
|
319 |
|
320 |
+
# tgt_prompt = gr.Textbox(value="Dog", label="Editing: Text prompt", interactive= True )
|
321 |
+
# tgt_idx = gr.Textbox(value="0", label="Editing: Object index", interactive= True )
|
322 |
+
# guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True )
|
323 |
+
# num_sampling_steps = gr.Textbox(value="50", label="Editing: Sampling steps", interactive= True )
|
324 |
+
# edge_thickness = gr.Textbox(value="10", label="Editing: Edge thickness", interactive= True )
|
325 |
+
# strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True )
|
326 |
|
327 |
+
# add_button = gr.Button("Run Editing")
|
328 |
+
# add_button.click(run_edit_text,
|
329 |
+
# inputs = [
|
330 |
+
# input_folder,
|
331 |
+
# num_tokens,
|
332 |
+
# num_sampling_steps,
|
333 |
+
# strength,
|
334 |
+
# edge_thickness,
|
335 |
+
# tgt_prompt,
|
336 |
+
# tgt_idx,
|
337 |
+
# guidance_scale
|
338 |
+
# ],
|
339 |
+
# outputs = [canvas_text_edit]
|
340 |
+
# )
|
341 |
|
342 |
|
343 |
demo.queue().launch(share=True, debug=True)
|
segment.py
CHANGED
@@ -32,7 +32,7 @@ def load_image(image_path, left=0, right=0, top=0, bottom=0, size = 512):
|
|
32 |
image = np.array(Image.fromarray(image).resize((size, size)))
|
33 |
return image
|
34 |
|
35 |
-
def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, noseg = False):
|
36 |
if torch.max(segmentation)==torch.min(segmentation)==-1:
|
37 |
print("nothing is detected!")
|
38 |
noseg=True
|
@@ -88,28 +88,30 @@ def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, nos
|
|
88 |
|
89 |
|
90 |
|
91 |
-
parser = argparse.ArgumentParser()
|
92 |
-
parser.add_argument("--name", type=str, default="obama")
|
93 |
-
parser.add_argument("--size", type=int, default=512)
|
94 |
-
parser.add_argument("--noseg", default=False, action="store_true" )
|
95 |
-
args = parser.parse_args()
|
96 |
-
base_folder_path = "."
|
97 |
|
98 |
-
|
99 |
-
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
|
100 |
-
input_folder = os.path.join(base_folder_path, args.name )
|
101 |
-
try:
|
102 |
-
image = load_image(os.path.join(input_folder, "img.png" ), size = args.size)
|
103 |
-
except:
|
104 |
-
image = load_image(os.path.join(input_folder, "img.jpg" ), size = args.size)
|
105 |
|
106 |
-
|
107 |
-
image.save(os.path.join(input_folder,"img_{}.png".format(args.size)))
|
108 |
-
inputs = processor(image, return_tensors="pt")
|
109 |
-
with torch.no_grad():
|
110 |
-
outputs = model(**inputs)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
image = np.array(Image.fromarray(image).resize((size, size)))
|
33 |
return image
|
34 |
|
35 |
+
def draw_panoptic_segmentation(segmentation, segments_info,save_folder=None, noseg = False, model =None):
|
36 |
if torch.max(segmentation)==torch.min(segmentation)==-1:
|
37 |
print("nothing is detected!")
|
38 |
noseg=True
|
|
|
88 |
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
def run_segmentation(image, name="example_tmp", size = 512, noseg=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
base_folder_path = "."
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
|
97 |
+
model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
|
98 |
+
|
99 |
+
|
100 |
+
# input_folder = os.path.join(base_folder_path, name )
|
101 |
+
# try:
|
102 |
+
# image = load_image(os.path.join(input_folder, "img.png" ), size = size)
|
103 |
+
# except:
|
104 |
+
# image = load_image(os.path.join(input_folder, "img.jpg" ), size = size)
|
105 |
+
# image =Image.fromarray(image)
|
106 |
+
os.makedirs(name, exist_ok=True)
|
107 |
+
image.save(os.path.join(name,"img_{}.png".format(size)))
|
108 |
+
inputs = processor(image, return_tensors="pt")
|
109 |
+
with torch.no_grad():
|
110 |
+
outputs = model(**inputs)
|
111 |
+
|
112 |
+
panoptic_segmentation = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
113 |
+
save_folder = os.path.join(base_folder_path, name)
|
114 |
+
os.makedirs(save_folder, exist_ok=True)
|
115 |
+
draw_panoptic_segmentation(**panoptic_segmentation, save_folder = save_folder, noseg = noseg, model = model)
|
116 |
+
print("Finish segment")
|
117 |
+
return
|