Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -205,10 +205,10 @@ with gr.Blocks() as demo:
|
|
205 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
206 |
num_tokens_global = num_tokens
|
207 |
embedding_learning_rate = gr.Textbox(value="0.00005", label="Embedding optimization: Learning rate", interactive= True )
|
208 |
-
max_emb_train_steps = gr.Number(value="
|
209 |
|
210 |
diffusion_model_learning_rate = gr.Textbox(value="0.00002", label="UNet Optimization: Learning rate", interactive= True )
|
211 |
-
max_diffusion_train_steps = gr.Number(value="
|
212 |
|
213 |
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
214 |
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|
|
|
205 |
num_tokens = gr.Number(value="5", label="num tokens to represent each object", interactive= True)
|
206 |
num_tokens_global = num_tokens
|
207 |
embedding_learning_rate = gr.Textbox(value="0.00005", label="Embedding optimization: Learning rate", interactive= True )
|
208 |
+
max_emb_train_steps = gr.Number(value="80", label="embedding optimization: Training steps", interactive= True )
|
209 |
|
210 |
diffusion_model_learning_rate = gr.Textbox(value="0.00002", label="UNet Optimization: Learning rate", interactive= True )
|
211 |
+
max_diffusion_train_steps = gr.Number(value="80", label="UNet Optimization: Learning rate: Training steps", interactive= True )
|
212 |
|
213 |
train_batch_size = gr.Number(value="5", label="Batch size", interactive= True )
|
214 |
gradient_accumulation_steps=gr.Number(value="5", label="Gradient accumulation", interactive= True )
|