d-edit / segment_sam.py
afeng's picture
first
d807efd
raw
history blame
11.1 kB
import argparse
import os
import copy
import shutil
import numpy as np
import json
import torch
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import sys
sys.path.append("/path/to/Grounded-Segment-Anything")
# change to your "Grounded-Segment-Anything" installation folder!!!!!
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import (
sam_model_registry,
sam_hq_model_registry,
SamPredictor
)
import cv2
import numpy as np
import matplotlib.pyplot as plt
def load_image_to_resize(image_path, left=0, right=0, top=0, bottom=0, size = 512):
if type(image_path) is str:
image = np.array(Image.open(image_path))[:, :, :3]
else:
image = image_path
h, w, c = image.shape
left = min(left, w-1)
right = min(right, w - left - 1)
top = min(top, h - left - 1)
bottom = min(bottom, h - top - 1)
image = image[top:h-bottom, left:w-right]
h, w, c = image.shape
if h < w:
offset = (w - h) // 2
image = image[:, offset:offset + h]
elif w < h:
offset = (h - w) // 2
image = image[offset:offset + w]
image = np.array(Image.fromarray(image).resize((size, size)))
return image
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def save_mask_data(output_dir, mask_list, box_list, label_list):
value = 0 # 0 for background
mask_img = torch.zeros(mask_list.shape[-2:])
for idx, mask in enumerate(mask_list):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
json_data = [{
'value': value,
'label': 'background'
}]
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data.append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.numpy().tolist(),
})
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
json.dump(json_data, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h")
parser.add_argument("--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file")
parser.add_argument("--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file")
parser.add_argument("--use_sam_hq", action="store_true", help="using sam-hq for prediction")
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
parser.add_argument("--name", type=str, default="", help="name of the input image folder")
parser.add_argument("--size", type=int, default=1024, help="image size")
args = parser.parse_args()
args.base_folder = "/path/to/Grounded-Segment-Anything"
# change to your "Grounded-Segment-Anything" installation folder!!!!!
input_folder = os.path.join(".", args.name)
args.config = os.path.join(args.base_folder,"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py")
args.grounded_checkpoint = "groundingdino_swint_ogc.pth"
args.sam_checkpoint="sam_vit_h_4b8939.pth"
args.box_threshold = 0.3
args.text_threshold = 0.25
args.device = "cuda"
# cfg
config_file = args.config # change the path of the model config file
grounded_checkpoint = os.path.join(args.base_folder,args.grounded_checkpoint) # change the path of the model
sam_version = args.sam_version
sam_checkpoint = os.path.join(args.base_folder,args.sam_checkpoint)
if args.sam_hq_checkpoint is not None:
sam_hq_checkpoint = os.path.join(args.base_folder,args.sam_hq_checkpoint)
use_sam_hq = args.use_sam_hq
# image_path = args.input_image
text_prompt = args.text_prompt
# output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
device = args.device
output_dir = input_folder
os.makedirs(output_dir, exist_ok=True)
# unify names
if len(os.listdir(input_folder)) == 1:
for filename in os.listdir(input_folder):
imgtype = "." + filename.split(".")[-1]
shutil.move(os.path.join(input_folder, filename), os.path.join(input_folder, "img"+imgtype))
### resizing and save
if os.path.exists(os.path.join(input_folder, "img.jpg")):
image_path = os.path.join(input_folder, "img.jpg")
else:
image_path = os.path.join(input_folder, "img.png")
image = load_image_to_resize(image_path, size = args.size)
image =Image.fromarray(image)
resized_image_path = os.path.join(input_folder, "img_{}.png".format(args.size))
image.save(resized_image_path)
image_path = resized_image_path
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, grounded_checkpoint, device=device)
# # visualize raw image
# image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# run grounding dino model
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device
)
# initialize SAM
if use_sam_hq:
predictor = SamPredictor(sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device))
else:
predictor = SamPredictor(sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device))
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(device),
multimask_output = False,
)
tot_detect = len(masks)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for idx, (mask,label) in enumerate(zip(masks,pred_phrases)):
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
np.save( os.path.join(output_dir, "maskSAM{}_{}.npy".format(idx, label)) ,mask[0].cpu().numpy())
for idx, (box, label) in enumerate(zip(boxes_filt, pred_phrases)):
label = label + "_{}".format(idx)
show_box(box.numpy(), plt.gca(), label)
rec_mask = np.zeros_like(mask[0].cpu().numpy()).astype(np.bool_)
for idx, box in enumerate(boxes_filt):
up = box[0].numpy().astype(np.int32)
down = box[2].numpy().astype(np.int32)
left = box[1].numpy().astype(np.int32)
right = box[3].numpy().astype(np.int32)
rec_mask[left:right, up:down] = True
plt.axis('off')
plt.savefig(
os.path.join(output_dir, "seg_init_SAM.png"),
bbox_inches="tight", dpi=300, pad_inches=0.0
)
mask_detected = np.logical_or.reduce([mask[0].cpu().numpy() for mask in masks ])
mask_undetected = np.logical_not(mask_detected)
np.save( os.path.join(output_dir, "SAM_detected.npy") ,mask_detected)
np.save( os.path.join(output_dir, "maskSAM{}_rest.npy".format(len(masks))) ,mask_undetected)
plt.imsave( os.path.join(output_dir,"mask_SAM-detected.png"), np.repeat(np.expand_dims( mask_detected.astype(float), axis=2), 3, axis = 2))