Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import copy | |
import shutil | |
import numpy as np | |
import json | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
# Grounding DINO | |
import sys | |
sys.path.append("/path/to/Grounded-Segment-Anything") | |
# change to your "Grounded-Segment-Anything" installation folder!!!!! | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.models import build_model | |
from GroundingDINO.groundingdino.util import box_ops | |
from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# segment anything | |
from segment_anything import ( | |
sam_model_registry, | |
sam_hq_model_registry, | |
SamPredictor | |
) | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def load_image_to_resize(image_path, left=0, right=0, top=0, bottom=0, size = 512): | |
if type(image_path) is str: | |
image = np.array(Image.open(image_path))[:, :, :3] | |
else: | |
image = image_path | |
h, w, c = image.shape | |
left = min(left, w-1) | |
right = min(right, w - left - 1) | |
top = min(top, h - left - 1) | |
bottom = min(bottom, h - top - 1) | |
image = image[top:h-bottom, left:w-right] | |
h, w, c = image.shape | |
if h < w: | |
offset = (w - h) // 2 | |
image = image[:, offset:offset + h] | |
elif w < h: | |
offset = (h - w) // 2 | |
image = image[offset:offset + w] | |
image = np.array(Image.fromarray(image).resize((size, size))) | |
return image | |
def load_image(image_path): | |
# load image | |
image_pil = Image.open(image_path).convert("RGB") # load image | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image_pil, image | |
def load_model(model_config_path, model_checkpoint_path, device): | |
args = SLConfig.fromfile(model_config_path) | |
args.device = device | |
model = build_model(args) | |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
model.eval() | |
return model | |
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
model = model.to(device) | |
image = image.to(device) | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
return boxes_filt, pred_phrases | |
def show_mask(mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_box(box, ax, label): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
ax.text(x0, y0, label) | |
def save_mask_data(output_dir, mask_list, box_list, label_list): | |
value = 0 # 0 for background | |
mask_img = torch.zeros(mask_list.shape[-2:]) | |
for idx, mask in enumerate(mask_list): | |
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(mask_img.numpy()) | |
plt.axis('off') | |
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0) | |
json_data = [{ | |
'value': value, | |
'label': 'background' | |
}] | |
for label, box in zip(label_list, box_list): | |
value += 1 | |
name, logit = label.split('(') | |
logit = logit[:-1] # the last is ')' | |
json_data.append({ | |
'value': value, | |
'label': name, | |
'logit': float(logit), | |
'box': box.numpy().tolist(), | |
}) | |
with open(os.path.join(output_dir, 'mask.json'), 'w') as f: | |
json.dump(json_data, f) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True) | |
parser.add_argument("--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h") | |
parser.add_argument("--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file") | |
parser.add_argument("--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file") | |
parser.add_argument("--use_sam_hq", action="store_true", help="using sam-hq for prediction") | |
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt") | |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") | |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") | |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False") | |
parser.add_argument("--name", type=str, default="", help="name of the input image folder") | |
parser.add_argument("--size", type=int, default=1024, help="image size") | |
args = parser.parse_args() | |
args.base_folder = "/path/to/Grounded-Segment-Anything" | |
# change to your "Grounded-Segment-Anything" installation folder!!!!! | |
input_folder = os.path.join(".", args.name) | |
args.config = os.path.join(args.base_folder,"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py") | |
args.grounded_checkpoint = "groundingdino_swint_ogc.pth" | |
args.sam_checkpoint="sam_vit_h_4b8939.pth" | |
args.box_threshold = 0.3 | |
args.text_threshold = 0.25 | |
args.device = "cuda" | |
# cfg | |
config_file = args.config # change the path of the model config file | |
grounded_checkpoint = os.path.join(args.base_folder,args.grounded_checkpoint) # change the path of the model | |
sam_version = args.sam_version | |
sam_checkpoint = os.path.join(args.base_folder,args.sam_checkpoint) | |
if args.sam_hq_checkpoint is not None: | |
sam_hq_checkpoint = os.path.join(args.base_folder,args.sam_hq_checkpoint) | |
use_sam_hq = args.use_sam_hq | |
# image_path = args.input_image | |
text_prompt = args.text_prompt | |
# output_dir = args.output_dir | |
box_threshold = args.box_threshold | |
text_threshold = args.text_threshold | |
device = args.device | |
output_dir = input_folder | |
os.makedirs(output_dir, exist_ok=True) | |
# unify names | |
if len(os.listdir(input_folder)) == 1: | |
for filename in os.listdir(input_folder): | |
imgtype = "." + filename.split(".")[-1] | |
shutil.move(os.path.join(input_folder, filename), os.path.join(input_folder, "img"+imgtype)) | |
### resizing and save | |
if os.path.exists(os.path.join(input_folder, "img.jpg")): | |
image_path = os.path.join(input_folder, "img.jpg") | |
else: | |
image_path = os.path.join(input_folder, "img.png") | |
image = load_image_to_resize(image_path, size = args.size) | |
image =Image.fromarray(image) | |
resized_image_path = os.path.join(input_folder, "img_{}.png".format(args.size)) | |
image.save(resized_image_path) | |
image_path = resized_image_path | |
# load image | |
image_pil, image = load_image(image_path) | |
# load model | |
model = load_model(config_file, grounded_checkpoint, device=device) | |
# # visualize raw image | |
# image_pil.save(os.path.join(output_dir, "raw_image.jpg")) | |
# run grounding dino model | |
boxes_filt, pred_phrases = get_grounding_output( | |
model, image, text_prompt, box_threshold, text_threshold, device=device | |
) | |
# initialize SAM | |
if use_sam_hq: | |
predictor = SamPredictor(sam_hq_model_registry[sam_version](checkpoint=sam_hq_checkpoint).to(device)) | |
else: | |
predictor = SamPredictor(sam_model_registry[sam_version](checkpoint=sam_checkpoint).to(device)) | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
predictor.set_image(image) | |
size = image_pil.size | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) | |
masks, _, _ = predictor.predict_torch( | |
point_coords = None, | |
point_labels = None, | |
boxes = transformed_boxes.to(device), | |
multimask_output = False, | |
) | |
tot_detect = len(masks) | |
# draw output image | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
for idx, (mask,label) in enumerate(zip(masks,pred_phrases)): | |
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) | |
np.save( os.path.join(output_dir, "maskSAM{}_{}.npy".format(idx, label)) ,mask[0].cpu().numpy()) | |
for idx, (box, label) in enumerate(zip(boxes_filt, pred_phrases)): | |
label = label + "_{}".format(idx) | |
show_box(box.numpy(), plt.gca(), label) | |
rec_mask = np.zeros_like(mask[0].cpu().numpy()).astype(np.bool_) | |
for idx, box in enumerate(boxes_filt): | |
up = box[0].numpy().astype(np.int32) | |
down = box[2].numpy().astype(np.int32) | |
left = box[1].numpy().astype(np.int32) | |
right = box[3].numpy().astype(np.int32) | |
rec_mask[left:right, up:down] = True | |
plt.axis('off') | |
plt.savefig( | |
os.path.join(output_dir, "seg_init_SAM.png"), | |
bbox_inches="tight", dpi=300, pad_inches=0.0 | |
) | |
mask_detected = np.logical_or.reduce([mask[0].cpu().numpy() for mask in masks ]) | |
mask_undetected = np.logical_not(mask_detected) | |
np.save( os.path.join(output_dir, "SAM_detected.npy") ,mask_detected) | |
np.save( os.path.join(output_dir, "maskSAM{}_rest.npy".format(len(masks))) ,mask_undetected) | |
plt.imsave( os.path.join(output_dir,"mask_SAM-detected.png"), np.repeat(np.expand_dims( mask_detected.astype(float), axis=2), 3, axis = 2)) | |