Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,673 Bytes
d807efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import numpy as np
from matplotlib import cm
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import torch
from utils import myroll2d
def create_outer_edge_mask_torch(mask, edge_thickness = 20):
mask_down = myroll2d(mask, edge_thickness, 0 )
mask_edge_down = (mask_down.to(torch.float) -mask.to(torch.float))>0
mask_up = myroll2d(mask, -edge_thickness, 0)
mask_edge_up = (mask_up.to(torch.float) -mask.to(torch.float))>0
mask_left = myroll2d(mask, 0, -edge_thickness)
mask_edge_left = (mask_left.to(torch.float) -mask.to(torch.float))>0
mask_right = myroll2d(mask, 0, edge_thickness)
mask_edge_right = (mask_right.to(torch.float) -mask.to(torch.float))>0
mask_ur = myroll2d(mask, -edge_thickness,edge_thickness)
mask_edge_ur = (mask_ur.to(torch.float) -mask.to(torch.float))>0
mask_ul = myroll2d(mask, -edge_thickness,-edge_thickness)
mask_edge_ul = (mask_ul.to(torch.float) -mask.to(torch.float))>0
mask_dr = myroll2d(mask, edge_thickness,edge_thickness )
mask_edge_dr = (mask_dr.to(torch.float) -mask.to(torch.float))>0
mask_dl = myroll2d(mask, edge_thickness,-edge_thickness)
mask_edge_ul = (mask_dl.to(torch.float) -mask.to(torch.float))>0
mask_edge = mask_union_torch(mask_edge_down, mask_edge_up, mask_edge_left, mask_edge_right,
mask_edge_ur, mask_edge_ul, mask_edge_dr, mask_edge_ul)
return mask_edge
def mask_substract_torch(mask1, mask2):
return ((mask1.cpu().to(torch.float)-mask2.cpu().to(torch.float))>0).to(torch.uint8)
def check_mask_overlap_torch(*masks):
assert torch.any(sum([m.float() for m in masks])<=1 )
def check_mask_overlap_numpy(*masks):
assert np.all(sum([m.astype(float) for m in masks])<=1 )
def check_cover_all_torch (*masks):
assert torch.all(sum([m.cpu().float() for m in masks])==1)
def process_mask_to_follow_priority(mask_list, priority_list):
for idx1, (m1 , p1) in enumerate(zip(mask_list, priority_list)):
for idx2, (m2 , p2) in enumerate(zip(mask_list, priority_list)):
if p2 > p1:
mask_list[idx1] = ((m1.astype(float)-m2.astype(float))>0).astype(np.uint8)
return mask_list
def mask_union(*masks):
masks = [m.astype(float) for m in masks]
res = sum(masks)>0
return res.astype(np.uint8)
def mask_intersection(mask1, mask2):
mask_uni = mask_union(mask1, mask2)
mask_intersec = ((mask1.astype(float)-mask2.astype(float))==0) * mask_uni
return mask_intersec
def mask_union_torch(*masks):
masks = [m.float() for m in masks]
res = sum(masks)>0
return res.to(torch.uint8)
def mask_intersection_torch(mask1, mask2):
mask_uni = mask_union_torch(mask1, mask2)
mask_intersec = ((mask1.float()-mask2.float())==0) * mask_uni
return mask_intersec.cpu().to(torch.uint8)
def visualize_mask_list(mask_list, savepath):
mask = 0
for midx, m in enumerate(mask_list):
try:
mask += m.astype(float)* midx
except:
mask += m.float()*midx
viridis = cm.get_cmap('viridis', len(mask_list))
fig, ax = plt.subplots()
ax.imshow( mask)
handles = []
label_list = []
for idx , _ in enumerate(mask_list):
color = viridis(idx)
label = f"{idx}"
handles.append(mpatches.Patch(color=color, label=label))
label_list.append(label)
ax.legend(handles=handles)
plt.savefig(savepath)
def visualize_mask_list_clean(mask_list, savepath):
mask = 0
for midx, m in enumerate(mask_list):
try:
mask += m.astype(float)* midx
except:
mask += m.float()*midx
viridis = cm.get_cmap('viridis', len(mask_list))
fig, ax = plt.subplots()
ax.imshow( mask)
handles = []
label_list = []
for idx , _ in enumerate(mask_list):
color = viridis(idx)
label = f"{idx}"
handles.append(mpatches.Patch(color=color, label=label))
label_list.append(label)
# ax.legend(handles=handles)
plt.savefig(savepath, dpi=500)
def move_mask(mask_select, delta_x, delta_y):
mask_edit = myroll2d(mask_select, delta_y, delta_x)
return mask_edit
def stack_mask_with_priority (mask_list_np, priority_list, edit_idx_list):
mask_sel = mask_union(*[mask_list_np[eid] for eid in edit_idx_list])
for midx, mask in enumerate(mask_list_np):
if midx not in edit_idx_list:
if priority_list[edit_idx_list[0]] >= priority_list[midx]:
mask = mask.astype(float) - np.logical_and(mask.astype(bool) , mask_sel.astype(bool)).astype(float)
mask_list_np[midx] = mask.astype("uint8")
for midx in edit_idx_list:
for midx_1 in edit_idx_list:
if midx != midx_1:
if priority_list[midx] <= priority_list[midx_1]:
mask = mask_list_np[midx].astype(float) - np.logical_and(mask_list_np[midx].astype(bool), mask_list_np[midx_1].astype(bool)).astype(float)
mask_list_np[midx] = mask.astype("uint8")
return mask_list_np
def process_remain_mask(mask_list, edit_idx_list = None, force_mask_remain = None):
print("Start to process remaining mask using nearest neighbor")
width = mask_list[0].shape[0]
height = mask_list[0].shape[1]
pixel_ind = np.arange( width* height)
y_axis = np.arange(width)
ymesh = np.repeat(y_axis[:,np.newaxis], height, axis = 1) #N, N
ymesh_vec = ymesh.reshape(-1) #N *N
x_axis = np.arange(height)
xmesh = np.repeat(x_axis[np.newaxis, : ], width, axis = 0)
xmesh_vec = xmesh.reshape(-1)
mask_remain = (1 - sum([m.astype(float) for m in mask_list])).astype(np.uint8)
if force_mask_remain is not None:
mask_list[force_mask_remain] = (mask_list[force_mask_remain].astype(float) + mask_remain.astype(float)).astype(np.uint8)
else:
if edit_idx_list is not None:
a = [mask_list[eidx] for eidx in edit_idx_list]
mask_edit = mask_union(*a)
else:
mask_edit = np.zeros_like(mask_remain).astype(np.uint8)
mask_feasible = (1 - mask_remain.astype(float) - mask_edit.astype(float)).astype(np.uint8)
edge_width = 2
mask_feasible_down = myroll2d(mask_feasible, edge_width, 0)
mask_edge_down = (mask_feasible_down.astype(float) -mask_feasible.astype(float))<0
mask_feasible_up = myroll2d(mask_feasible, -edge_width, 0)
mask_edge_up = (mask_feasible_up.astype(float) -mask_feasible.astype(float))<0
mask_feasible_left = myroll2d(mask_feasible, 0, -edge_width)
mask_edge_left = (mask_feasible_left.astype(float) -mask_feasible.astype(float))<0
mask_feasible_right = myroll2d(mask_feasible, 0, edge_width)
mask_edge_right = (mask_feasible_right.astype(float) -mask_feasible.astype(float))<0
mask_feasible_ur = myroll2d(mask_feasible, -edge_width,edge_width)
mask_edge_ur = (mask_feasible_ur.astype(float) -mask_feasible.astype(float))<0
mask_feasible_ul = myroll2d(mask_feasible, -edge_width,-edge_width )
mask_edge_ul = (mask_feasible_ul.astype(float) -mask_feasible.astype(float))<0
mask_feasible_dr = myroll2d(mask_feasible, edge_width,edge_width )
mask_edge_dr = (mask_feasible_dr.astype(float) -mask_feasible.astype(float))<0
mask_feasible_dl = myroll2d(mask_feasible, edge_width,-edge_width)
mask_edge_ul = (mask_feasible_dl.astype(float) -mask_feasible.astype(float))<0
mask_edge = mask_union(
mask_edge_down, mask_edge_up, mask_edge_left, mask_edge_right, mask_edge_ur, mask_edge_ul, mask_edge_dr, mask_edge_ul
)
mask_feasible_edge = mask_intersection(mask_edge, mask_feasible)
vec_mask_feasible_edge = mask_feasible_edge.reshape(-1)
vec_mask_remain = mask_remain.reshape(-1)
indvec_all = np.arange(width*height)
vec_region_partition= 0
for mask_idx, mask in enumerate(mask_list):
vec_region_partition += mask.reshape(-1) * mask_idx
vec_region_partition += mask_remain.reshape(-1) * mask_idx
# assert 0 in vec_region_partition
vec_ind_remain = np.nonzero(vec_mask_remain)[0]
vec_ind_feasible_edge = np.nonzero(vec_mask_feasible_edge)[0]
vec_x_remain = xmesh_vec[vec_ind_remain]
vec_y_remain = ymesh_vec[vec_ind_remain]
vec_x_feasible_edge = xmesh_vec[vec_ind_feasible_edge]
vec_y_feasible_edge = ymesh_vec[vec_ind_feasible_edge]
x_dis = vec_x_remain[:,np.newaxis] - vec_x_feasible_edge[np.newaxis,:]
y_dis = vec_y_remain[:,np.newaxis] - vec_y_feasible_edge[np.newaxis,:]
dis = x_dis **2 + y_dis **2
pos = np.argmin(dis, axis = 1)
nearest_point = vec_ind_feasible_edge[pos] # closest point to target point
nearest_region = vec_region_partition[nearest_point]
nearest_region_set = set(nearest_region)
if edit_idx_list is not None:
for edit_idx in edit_idx_list:
assert edit_idx not in nearest_region
for midx, m in enumerate(mask_list):
if midx in nearest_region_set:
vec_newmask = np.zeros_like(indvec_all)
add_ind = vec_ind_remain [np.argwhere(nearest_region==midx)]
vec_newmask[add_ind] = 1
mask_list[midx] = mask_list[midx].astype(float)+ vec_newmask.reshape( mask_list[midx].shape).astype(float)
mask_list[midx] = mask_list[midx] > 0
print("Finish processing remaining mask, if you want to edit, launch the ui")
return mask_list, mask_remain
def resize_mask(mask_np, resize_ratio = 1):
w, h = mask_np.shape[0], mask_np.shape[1]
resized_w, resized_h = int(w*resize_ratio),int(h*resize_ratio)
mask_resized = torch.nn.functional.interpolate(torch.from_numpy(mask_np).unsqueeze(0).unsqueeze(0), (resized_w, resized_h)).squeeze()
mask = torch.zeros(w, h)
if w > resized_w:
mask[:resized_w, :resized_h] = mask_resized
else:
assert h <= resized_h
mask = mask_resized[resized_w//2-w//2: resized_w//2-w//2+w, resized_h//2-h//2: resized_h//2-h//2+h]
return mask.cpu().numpy().astype(np.uint8)
def process_mask_move_torch(
mask_list,
move_index_list,
delta_x_list = None,
delta_y_list = None,
edit_priority_list = None,
force_mask_remain = None,
resize_list = None
):
mask_list_np = [m.cpu().numpy() for m in mask_list]
priority_list = [0 for _ in range(len(mask_list_np))]
for idx, (move_index, delta_x, delta_y, priority) in enumerate(zip(move_index_list, delta_x_list, delta_y_list, edit_priority_list)):
priority_list[move_index] = priority
if resize_list is not None:
mask = resize_mask (mask_list_np[move_index], resize_list[idx])
else:
mask = mask_list_np[move_index]
mask_list_np[move_index] = move_mask(mask, delta_x = delta_x, delta_y = delta_y)
mask_list_np = stack_mask_with_priority (mask_list_np, priority_list, move_index_list) # exists blank
check_mask_overlap_numpy(*mask_list_np)
mask_list_np, mask_remain = process_remain_mask(mask_list_np, move_index_list,force_mask_remain)
mask_list = [torch.from_numpy(m).to( dtype=torch.uint8) for m in mask_list_np]
mask_remain = torch.from_numpy(mask_remain).to(dtype=torch.uint8)
return mask_list, mask_remain
def process_mask_remove_torch(mask_list, remove_idx):
mask_list_np = [m.cpu().numpy() for m in mask_list]
mask_list_np[remove_idx] = np.zeros_like(mask_list_np[0])
mask_list_np, mask_remain = process_remain_mask(mask_list_np)
mask_list = [torch.from_numpy(m).to(dtype=torch.uint8) for m in mask_list_np]
mask_remain = torch.from_numpy(mask_remain).to(dtype=torch.uint8)
return mask_list, mask_remain
def get_mask_difference_torch(mask_list1, mask_list2):
assert len(mask_list1) == len(mask_list2)
mask_diff = torch.zeros_like(mask_list1[0])
for mask1 , mask2 in zip(mask_list1, mask_list2):
diff = ((mask1.float() - mask2.float())!=0).to(torch.uint8)
mask_diff = mask_union_torch(mask_diff, diff)
return mask_diff
def save_mask_list_to_npys(folder, mask_list, mask_label_list, name = "mask"):
for midx, (mask, mask_label) in enumerate(zip(mask_list, mask_label_list)):
np.save(os.path.join(folder, "{}{}_{}.npy".format(name, midx, mask_label)), mask)
|