Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,243 Bytes
d807efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import numpy as np
import torch
import math
import xformers
class DummyController:
def __call__(self, *args):
return args[0]
def __init__(self):
self.num_att_layers = 0
class GroupedCAController:
def __init__(self, mask_list = None):
self.mask_list = mask_list
if self.mask_list is None:
self.is_decom = False
else:
self.is_decom = True
def mask_img_to_mask_vec(self, mask, length):
mask_vec = torch.nn.functional.interpolate(mask.unsqueeze(0).unsqueeze(0), (length, length)).squeeze()
mask_vec = mask_vec.flatten()
return mask_vec
def ca_forward_decom(self, q, k_list, v_list, scale, place_in_unet):
# attn [Bh, N, d ]
# [8, 4096, 77]
# q [Bh, N, d] [8, 4096, 40] [8, 1024, 80] [8, 256,160] [8, 64, 160]
# k [Bh, P, d] [8, 77 , 40] [8, 77, 80] [8, 77, 160] [8, 77, 160]
# v [Bh, P, d] [8, 77 , 40] [8, 77, 80] [8, 77, 160] [8, 77, 160]
N = q.shape[1]
mask_vec_list = []
for mask in self.mask_list:
mask_vec = self.mask_img_to_mask_vec(mask, int(math.sqrt(N))) # [1,N,1]
mask_vec = mask_vec.unsqueeze(0).unsqueeze(-1)
mask_vec_list.append(mask_vec)
out = 0
for mask_vec, k, v in zip(mask_vec_list, k_list, v_list):
sim = torch.einsum("b i d, b j d -> b i j", q, k) * scale # [8, 4096, 20]
attn = sim.softmax(dim=-1) # [Bh,N,P] [8,4096,20]
attn = attn.masked_fill(mask_vec==0, 0)
masked_out = torch.einsum("b i j, b j d -> b i d", attn, v) # [Bh,N,d] [8,4096,320/h]
# mask_vec_inf = torch.where(mask_vec>0, 0, torch.finfo(k.dtype).min)
# masked_out1 = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask_vec_inf, op=None, scale=scale)
out += masked_out
return out
def reshape_heads_to_batch_dim(self):
def func(tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
return func
def reshape_batch_dim_to_heads(self):
def func(tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.num_heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
return func
def register_attention_disentangled_control(unet, controller):
def ca_forward(self, place_in_unet):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(x, encoder_hidden_states =None, attention_mask=None):
if isinstance(controller, DummyController): # SA CA full
q = self.to_q(x)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if is_cross else x
k = self.to_k(encoder_hidden_states)
v = self.to_v(encoder_hidden_states)
q = self.head_to_batch_dim(q)
k = self.head_to_batch_dim(k)
v = self.head_to_batch_dim(v)
# sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
# attn = sim.softmax(dim=-1)
# attn = controller(attn, is_cross, place_in_unet)
# out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = xformers.ops.memory_efficient_attention(
q, k, v, attn_bias=None, op=None, scale=self.scale
)
out = self.batch_to_head_dim(out)
else: # decom: CA+SA
is_cross = encoder_hidden_states is not None
assert is_cross is not None
encoder_hidden_states_list = encoder_hidden_states if is_cross else x
q = self.to_q(x)
q = self.head_to_batch_dim(q) # [Bh, 4096, 320/h ] h: 8
if is_cross: #CA
k_list = []
v_list = []
assert type(encoder_hidden_states_list) is list
for encoder_hidden_states in encoder_hidden_states_list:
k = self.to_k(encoder_hidden_states)
k = self.head_to_batch_dim(k) # [Bh, 77, 320/h ]
k_list.append(k)
v = self.to_v(encoder_hidden_states)
v = self.head_to_batch_dim(v) # [Bh, 77, 320/h ]
v_list.append(v)
out = controller.ca_forward_decom(q, k_list, v_list, self.scale, place_in_unet) # [Bh,N,d]
out = self.batch_to_head_dim(out)
else: # SA
exit("decomposing SA!")
k = self.to_k(x)
v = self.to_v(x)
k = self.head_to_batch_dim(k) # [Bh, 77, 320/h ]
v = self.head_to_batch_dim(v) # [Bh, 77, 320/h ]
import pdb; pdb.set_trace()
if k.shape[1] <= 1024 ** 2:
out = controller.sa_forward(q, k, v, self.scale, place_in_unet) # [Bh,N,d]
else:
print("warining")
out = controller.sa_forward_decom(q, k, v, self.scale, place_in_unet) # [Bh,N,d]
# sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
# attn = sim.softmax(dim=-1) # [8,4096,4096] [Bh,N,N]
# out = torch.einsum("b i j, b j d -> b i d", attn, v) # [Bh,N,d] [8,4096,320/h]
out = self.batch_to_head_dim(out) # [B, H, N, D]
return to_out(out)
return forward
if controller is None:
controller = DummyController()
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'Attention' and net_.to_k.in_features == unet.ca_dim:
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = unet.named_children()
for net in sub_nets:
if "down" in net[0]:
down_count = register_recr(net[1], 0, "down")#6
cross_att_count += down_count
elif "up" in net[0]:
up_count = register_recr(net[1], 0, "up") #9
cross_att_count += up_count
elif "mid" in net[0]:
mid_count = register_recr(net[1], 0, "mid") #1
cross_att_count += mid_count
controller.num_att_layers = cross_att_count
|