Spaces:
Running
on
T4
Running
on
T4
add app setup file
Browse files
app.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
import uuid
|
7 |
+
import torch
|
8 |
+
import cohere
|
9 |
+
import secrets
|
10 |
+
import requests
|
11 |
+
import fasttext
|
12 |
+
import replicate
|
13 |
+
import numpy as np
|
14 |
+
import gradio as gr
|
15 |
+
from PIL import Image
|
16 |
+
from groq import Groq
|
17 |
+
from TTS.api import TTS
|
18 |
+
from elevenlabs import save
|
19 |
+
from gradio.themes.base import Base
|
20 |
+
from elevenlabs.client import ElevenLabs
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
from gradio.themes.utils import colors, fonts, sizes
|
23 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
24 |
+
from prompt_examples import TEXT_CHAT_EXAMPLES, IMG_GEN_PROMPT_EXAMPLES, AUDIO_EXAMPLES, TEXT_CHAT_EXAMPLES_LABELS, IMG_GEN_PROMPT_EXAMPLES_LABELS, AUDIO_EXAMPLES_LABELS
|
25 |
+
from preambles import CHAT_PREAMBLE, AUDIO_RESPONSE_PREAMBLE, IMG_DESCRIPTION_PREAMBLE
|
26 |
+
from constants import LID_LANGUAGES, NEETS_AI_LANGID_MAP, AYA_MODEL_NAME, BATCH_SIZE, USE_ELVENLABS, USE_REPLICATE
|
27 |
+
|
28 |
+
HF_API_TOKEN = os.getenv("HF_API_KEY")
|
29 |
+
ELEVEN_LABS_KEY = os.getenv("ELEVEN_LABS_KEY")
|
30 |
+
NEETS_AI_API_KEY = os.getenv("NEETS_AI_API_KEY")
|
31 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
32 |
+
IMG_COHERE_API_KEY = os.getenv("IMG_COHERE_API_KEY")
|
33 |
+
AUDIO_COHERE_API_KEY = os.getenv("AUDIO_COHERE_API_KEY")
|
34 |
+
CHAT_COHERE_API_KEY = os.getenv("CHAT_COHERE_API_KEY")
|
35 |
+
|
36 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
|
38 |
+
# Initialize cohere clients
|
39 |
+
img_prompt_client = cohere.Client(
|
40 |
+
api_key=IMG_COHERE_API_KEY,
|
41 |
+
client_name="c4ai-aya-expanse-img"
|
42 |
+
)
|
43 |
+
chat_client = cohere.Client(
|
44 |
+
api_key=CHAT_COHERE_API_KEY,
|
45 |
+
client_name="c4ai-aya-expanse-chat"
|
46 |
+
)
|
47 |
+
audio_response_client = cohere.Client(
|
48 |
+
api_key=AUDIO_COHERE_API_KEY,
|
49 |
+
client_name="c4ai-aya-expanse-audio"
|
50 |
+
)
|
51 |
+
|
52 |
+
# Initialize the Groq client
|
53 |
+
groq_client = Groq(api_key=GROQ_API_KEY)
|
54 |
+
|
55 |
+
# Initialize the ElevenLabs client
|
56 |
+
eleven_labs_client = ElevenLabs(
|
57 |
+
api_key=ELEVEN_LABS_KEY,
|
58 |
+
)
|
59 |
+
|
60 |
+
# Language identification
|
61 |
+
lid_model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
62 |
+
LID_model = fasttext.load_model(lid_model_path)
|
63 |
+
|
64 |
+
def predict_language(text):
|
65 |
+
text = re.sub("\n", " ", text)
|
66 |
+
label, logit = LID_model.predict(text)
|
67 |
+
label = label[0][len("__label__") :]
|
68 |
+
print("predicted language:", label)
|
69 |
+
return label
|
70 |
+
|
71 |
+
# Image Generation util functions
|
72 |
+
def get_hf_inference_api_response(payload, model_id):
|
73 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
74 |
+
MODEL_API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
|
75 |
+
response = requests.post(MODEL_API_URL, headers=headers, json=payload)
|
76 |
+
return response.content
|
77 |
+
|
78 |
+
def replicate_api_inference(input_prompt):
|
79 |
+
input_params={
|
80 |
+
"prompt": input_prompt,
|
81 |
+
"go_fast": True,
|
82 |
+
"megapixels": "1",
|
83 |
+
"num_outputs": 1,
|
84 |
+
"aspect_ratio": "1:1",
|
85 |
+
"output_format": "jpg",
|
86 |
+
"output_quality": 80,
|
87 |
+
"num_inference_steps": 4
|
88 |
+
}
|
89 |
+
image = replicate.run("black-forest-labs/flux-schnell",input=input_params)
|
90 |
+
image = Image.open(image[0])
|
91 |
+
return image
|
92 |
+
|
93 |
+
def generate_image(input_prompt, model_id="black-forest-labs/FLUX.1-schnell"):
|
94 |
+
if input_prompt!="":
|
95 |
+
if input_prompt=='Image generation blocked for prompts that include humans, kids, or children.':
|
96 |
+
return None
|
97 |
+
else:
|
98 |
+
if USE_REPLICATE:
|
99 |
+
print("using replicate for image generation")
|
100 |
+
image = replicate_api_inference(input_prompt)
|
101 |
+
else:
|
102 |
+
try:
|
103 |
+
print("using HF inference API for image generation")
|
104 |
+
image_bytes = get_hf_inference_api_response({ "inputs": input_prompt}, model_id)
|
105 |
+
image = np.array(Image.open(io.BytesIO(image_bytes)))
|
106 |
+
except Exception as e:
|
107 |
+
print("HF API error:", e)
|
108 |
+
# generate image with help replicate in case of error
|
109 |
+
image = replicate_api_inference(input_prompt)
|
110 |
+
return image
|
111 |
+
else:
|
112 |
+
return None
|
113 |
+
|
114 |
+
def generate_img_prompt(input_prompt):
|
115 |
+
# clean prompt before doing language detection
|
116 |
+
cleaned_prompt = clean_text(input_prompt, remove_bullets=True, remove_newline=True)
|
117 |
+
text_lang_code = predict_language(cleaned_prompt)
|
118 |
+
language = LID_LANGUAGES[text_lang_code]
|
119 |
+
|
120 |
+
gr.Info("Generating Image", duration=2)
|
121 |
+
|
122 |
+
if language!="english":
|
123 |
+
text = f"""
|
124 |
+
Translate the given input prompt to English.
|
125 |
+
Input Prompt: {input_prompt}
|
126 |
+
Once translated, use the English version of the prompt to create a detailed image description suitable for a text-to-image model.
|
127 |
+
Ensure the description is concise, limited to 2-3 lines, and integrates key elements from the translated prompt.
|
128 |
+
Add the prompt English translation to the image description, and respond with that.
|
129 |
+
"""
|
130 |
+
else:
|
131 |
+
text = f"""Generate a detailed image description which can be used to generate an image using a text-to-image model based on the given input prompt:
|
132 |
+
Input Prompt: {input_prompt}
|
133 |
+
Do not use more than 3-4 lines for the description.
|
134 |
+
"""
|
135 |
+
|
136 |
+
response = img_prompt_client.chat(message=text, preamble=IMG_DESCRIPTION_PREAMBLE, model=AYA_MODEL_NAME)
|
137 |
+
output = response.text
|
138 |
+
|
139 |
+
return output
|
140 |
+
|
141 |
+
|
142 |
+
# Chat with Aya util functions
|
143 |
+
|
144 |
+
def trigger_example(example):
|
145 |
+
chat, updated_history = generate_aya_chat_response(example)
|
146 |
+
return chat, updated_history
|
147 |
+
|
148 |
+
def generate_aya_chat_response(user_message, cid, token, history=None):
|
149 |
+
if not token:
|
150 |
+
raise gr.Error("Error loading.")
|
151 |
+
|
152 |
+
if history is None:
|
153 |
+
history = []
|
154 |
+
if cid == "" or None:
|
155 |
+
cid = str(uuid.uuid4())
|
156 |
+
|
157 |
+
print(f"cid: {cid} prompt:{user_message}")
|
158 |
+
|
159 |
+
history.append(user_message)
|
160 |
+
|
161 |
+
stream = chat_client.chat_stream(message=user_message, preamble=CHAT_PREAMBLE, conversation_id=cid, model=AYA_MODEL_NAME, connectors=[], temperature=0.3)
|
162 |
+
output = ""
|
163 |
+
|
164 |
+
for idx, response in enumerate(stream):
|
165 |
+
if response.event_type == "text-generation":
|
166 |
+
output += response.text
|
167 |
+
if idx == 0:
|
168 |
+
history.append(" " + output)
|
169 |
+
else:
|
170 |
+
history[-1] = output
|
171 |
+
chat = [
|
172 |
+
(history[i].strip(), history[i + 1].strip())
|
173 |
+
for i in range(0, len(history) - 1, 2)
|
174 |
+
]
|
175 |
+
yield chat, history, cid
|
176 |
+
|
177 |
+
return chat, history, cid
|
178 |
+
|
179 |
+
|
180 |
+
def clear_chat():
|
181 |
+
return [], [], str(uuid.uuid4())
|
182 |
+
|
183 |
+
# Audio Pipeline util functions
|
184 |
+
|
185 |
+
def transcribe_and_stream(inputs, show_info="no", model_name="openai/whisper-large-v3-turbo", language="english"):
|
186 |
+
if inputs is not None and inputs!="":
|
187 |
+
if show_info=="show_info":
|
188 |
+
gr.Info("Processing Audio", duration=1)
|
189 |
+
if model_name != "groq_whisper":
|
190 |
+
print("DEVICE:", DEVICE)
|
191 |
+
pipe = pipeline(
|
192 |
+
task="automatic-speech-recognition",
|
193 |
+
model=model_name,
|
194 |
+
chunk_length_s=30,
|
195 |
+
DEVICE=DEVICE)
|
196 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"]
|
197 |
+
else:
|
198 |
+
text = groq_whisper_tts(inputs)
|
199 |
+
|
200 |
+
# stream text output
|
201 |
+
for i in range(len(text)):
|
202 |
+
time.sleep(0.01)
|
203 |
+
yield text[: i + 10]
|
204 |
+
else:
|
205 |
+
return ""
|
206 |
+
|
207 |
+
|
208 |
+
def aya_speech_text_response(text):
|
209 |
+
if text is not None and text!="":
|
210 |
+
stream = audio_response_client.chat_stream(message=text,preamble=AUDIO_RESPONSE_PREAMBLE, model=AYA_MODEL_NAME)
|
211 |
+
output = ""
|
212 |
+
|
213 |
+
for event in stream:
|
214 |
+
if event:
|
215 |
+
if event.event_type == "text-generation":
|
216 |
+
output+=event.text
|
217 |
+
cleaned_output = clean_text(output)
|
218 |
+
yield cleaned_output
|
219 |
+
else:
|
220 |
+
return ""
|
221 |
+
|
222 |
+
def clean_text(text, remove_bullets=False, remove_newline=False):
|
223 |
+
# Remove bold formatting
|
224 |
+
cleaned_text = re.sub(r"\*\*", "", text)
|
225 |
+
|
226 |
+
if remove_bullets:
|
227 |
+
cleaned_text = re.sub(r"^- ", "", cleaned_text, flags=re.MULTILINE)
|
228 |
+
|
229 |
+
if remove_newline:
|
230 |
+
cleaned_text = re.sub(r"\n", " ", cleaned_text)
|
231 |
+
|
232 |
+
return cleaned_text
|
233 |
+
|
234 |
+
def convert_text_to_speech(text, language="english"):
|
235 |
+
|
236 |
+
# do language detection to determine voice of speech response
|
237 |
+
if text is not None and text!="":
|
238 |
+
# clean text before doing language detection
|
239 |
+
cleaned_text = clean_text(text, remove_bullets=True, remove_newline=True)
|
240 |
+
text_lang_code = predict_language(cleaned_text)
|
241 |
+
language = LID_LANGUAGES[text_lang_code]
|
242 |
+
|
243 |
+
if not USE_ELVENLABS:
|
244 |
+
if language!= "japanese":
|
245 |
+
audio_path = neetsai_tts(text, language)
|
246 |
+
else:
|
247 |
+
print("DEVICE:", DEVICE)
|
248 |
+
# if language is japanese then use XTTS for TTS since neets_ai doesn't support japanese voice
|
249 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(DEVICE)
|
250 |
+
speaker_wav="samples/ja-sample.wav"
|
251 |
+
lang_code="ja"
|
252 |
+
audio_path = "./output.wav"
|
253 |
+
tts.tts_to_file(text=text, speaker_wav=speaker_wav, language=lang_code, file_path=audio_path)
|
254 |
+
else:
|
255 |
+
# use elevenlabs for TTS
|
256 |
+
audio_path = elevenlabs_generate_audio(text)
|
257 |
+
|
258 |
+
return audio_path
|
259 |
+
else:
|
260 |
+
return None
|
261 |
+
|
262 |
+
def elevenlabs_generate_audio(text):
|
263 |
+
audio = eleven_labs_client.generate(
|
264 |
+
text=text,
|
265 |
+
voice="River",
|
266 |
+
model="eleven_turbo_v2_5", #"eleven_multilingual_v2"
|
267 |
+
)
|
268 |
+
# save audio
|
269 |
+
audio_path = "./audio.mp3"
|
270 |
+
save(audio, audio_path)
|
271 |
+
return audio_path
|
272 |
+
|
273 |
+
def neetsai_tts(input_text, language):
|
274 |
+
|
275 |
+
lang_id = NEETS_AI_LANGID_MAP[language]
|
276 |
+
neets_vits_voice_id = f"vits-{lang_id}"
|
277 |
+
|
278 |
+
response = requests.request(
|
279 |
+
method="POST",
|
280 |
+
url="https://api.neets.ai/v1/tts",
|
281 |
+
headers={
|
282 |
+
"Content-Type": "application/json",
|
283 |
+
"X-API-Key": NEETS_AI_API_KEY
|
284 |
+
},
|
285 |
+
json={
|
286 |
+
"text": input_text,
|
287 |
+
"voice_id": neets_vits_voice_id,
|
288 |
+
"params": {
|
289 |
+
"model": "vits"
|
290 |
+
}
|
291 |
+
}
|
292 |
+
)
|
293 |
+
# save audio file
|
294 |
+
audio_path = "neets_demo.mp3"
|
295 |
+
with open(audio_path, "wb") as f:
|
296 |
+
f.write(response.content)
|
297 |
+
return audio_path
|
298 |
+
|
299 |
+
def groq_whisper_tts(filename):
|
300 |
+
with open(filename, "rb") as file:
|
301 |
+
transcriptions = groq_client.audio.transcriptions.create(
|
302 |
+
file=(filename, file.read()),
|
303 |
+
model="whisper-large-v3-turbo",
|
304 |
+
response_format="json",
|
305 |
+
temperature=0.0
|
306 |
+
)
|
307 |
+
print("transcribed text:", transcriptions.text)
|
308 |
+
print("********************************")
|
309 |
+
return transcriptions.text
|
310 |
+
|
311 |
+
|
312 |
+
# setup gradio app theme
|
313 |
+
theme = gr.themes.Base(
|
314 |
+
primary_hue=gr.themes.colors.teal,
|
315 |
+
secondary_hue=gr.themes.colors.blue,
|
316 |
+
neutral_hue=gr.themes.colors.gray,
|
317 |
+
text_size=gr.themes.sizes.text_lg,
|
318 |
+
).set(
|
319 |
+
# Primary Button Color
|
320 |
+
button_primary_background_fill="#114A56",
|
321 |
+
button_primary_background_fill_hover="#114A56",
|
322 |
+
# Block Labels
|
323 |
+
block_title_text_weight="600",
|
324 |
+
block_label_text_weight="600",
|
325 |
+
block_label_text_size="*text_md",
|
326 |
+
)
|
327 |
+
|
328 |
+
|
329 |
+
demo = gr.Blocks(theme=theme, analytics_enabled=False)
|
330 |
+
|
331 |
+
with demo:
|
332 |
+
with gr.Row(variant="panel"):
|
333 |
+
with gr.Column(scale=1):
|
334 |
+
gr.Image("aya-expanse.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False)
|
335 |
+
with gr.Column(scale=30):
|
336 |
+
gr.Markdown("""C4AI Aya Expanse is a state-of-art model with highly advanced capabilities to connect the world across languages.
|
337 |
+
<br/>
|
338 |
+
You can use this space to chat, speak and visualize with Aya Expanse in 23 languages.
|
339 |
+
|
340 |
+
**Developed by**: [Cohere for AI](https://cohere.com/research) and [Cohere](https://cohere.com/)
|
341 |
+
"""
|
342 |
+
)
|
343 |
+
# Text Chat
|
344 |
+
with gr.TabItem("Chat with Aya") as chat_with_aya:
|
345 |
+
cid = gr.State("")
|
346 |
+
token = gr.State(value=None)
|
347 |
+
|
348 |
+
with gr.Column():
|
349 |
+
with gr.Row():
|
350 |
+
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, height=300)
|
351 |
+
|
352 |
+
with gr.Row():
|
353 |
+
user_message = gr.Textbox(lines=1, placeholder="Ask anything in our 23 languages ...", label="Input", show_label=False)
|
354 |
+
|
355 |
+
|
356 |
+
with gr.Row():
|
357 |
+
submit_button = gr.Button("Submit",variant="primary")
|
358 |
+
clear_button = gr.Button("Clear")
|
359 |
+
|
360 |
+
|
361 |
+
history = gr.State([])
|
362 |
+
|
363 |
+
user_message.submit(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
|
364 |
+
submit_button.click(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
|
365 |
+
|
366 |
+
clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)
|
367 |
+
|
368 |
+
user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
|
369 |
+
submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
|
370 |
+
clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
|
371 |
+
|
372 |
+
with gr.Row():
|
373 |
+
gr.Examples(
|
374 |
+
examples=TEXT_CHAT_EXAMPLES,
|
375 |
+
inputs=user_message,
|
376 |
+
cache_examples=False,
|
377 |
+
fn=trigger_example,
|
378 |
+
outputs=[chatbot],
|
379 |
+
examples_per_page=25,
|
380 |
+
label="Load example prompt for:",
|
381 |
+
example_labels=TEXT_CHAT_EXAMPLES_LABELS,
|
382 |
+
)
|
383 |
+
|
384 |
+
# Audio Pipeline
|
385 |
+
with gr.TabItem("Speak with Aya") as speak_with_aya:
|
386 |
+
|
387 |
+
with gr.Row():
|
388 |
+
with gr.Column():
|
389 |
+
e2e_audio_file = gr.Audio(sources="microphone", type="filepath", min_length=None)
|
390 |
+
|
391 |
+
clear_button_microphone = gr.ClearButton()
|
392 |
+
gr.Examples(
|
393 |
+
examples=AUDIO_EXAMPLES,
|
394 |
+
inputs=e2e_audio_file,
|
395 |
+
cache_examples=False,
|
396 |
+
examples_per_page=25,
|
397 |
+
label="Load example audio for:",
|
398 |
+
example_labels=AUDIO_EXAMPLES_LABELS,
|
399 |
+
)
|
400 |
+
|
401 |
+
with gr.Column():
|
402 |
+
e2e_audio_file_trans = gr.Textbox(lines=3,label="Your Input", autoscroll=False, show_copy_button=True, interactive=False)
|
403 |
+
e2e_audio_file_aya_response = gr.Textbox(lines=3,label="Aya's Response", show_copy_button=True, container=True, interactive=False)
|
404 |
+
e2e_aya_audio_response = gr.Audio(type="filepath", label="Aya's Audio Response")
|
405 |
+
|
406 |
+
show_info = gr.Textbox(value="show_info", visible=False)
|
407 |
+
stt_model = gr.Textbox(value="groq_whisper", visible=False)
|
408 |
+
|
409 |
+
with gr.Accordion("See Details", open=False):
|
410 |
+
gr.Markdown("To enable voice interaction with Aya Expanse, this space uses [Whisper large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) and [Groq](https://groq.com/) for STT and [neets.ai](http://neets.ai/) for TTS.")
|
411 |
+
|
412 |
+
|
413 |
+
# Image Generation
|
414 |
+
with gr.TabItem("Visualize with Aya") as visualize_with_aya:
|
415 |
+
with gr.Row():
|
416 |
+
with gr.Column():
|
417 |
+
input_img_prompt = gr.Textbox(placeholder="Ask anything in our 23 languages ...", label="Describe an image", lines=3)
|
418 |
+
# generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
|
419 |
+
submit_button_img = gr.Button(value="Submit", variant="primary")
|
420 |
+
clear_button_img = gr.ClearButton()
|
421 |
+
|
422 |
+
|
423 |
+
with gr.Column():
|
424 |
+
generated_img = gr.Image(label="Generated Image", interactive=False)
|
425 |
+
|
426 |
+
with gr.Row():
|
427 |
+
gr.Examples(
|
428 |
+
examples=IMG_GEN_PROMPT_EXAMPLES,
|
429 |
+
inputs=input_img_prompt,
|
430 |
+
cache_examples=False,
|
431 |
+
examples_per_page=25,
|
432 |
+
label="Load example prompt for:",
|
433 |
+
example_labels=IMG_GEN_PROMPT_EXAMPLES_LABELS
|
434 |
+
)
|
435 |
+
generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
|
436 |
+
|
437 |
+
# increase spacing between examples and Accordion components
|
438 |
+
with gr.Row():
|
439 |
+
pass
|
440 |
+
with gr.Row():
|
441 |
+
pass
|
442 |
+
with gr.Row():
|
443 |
+
pass
|
444 |
+
|
445 |
+
with gr.Row():
|
446 |
+
with gr.Accordion("See Details", open=False):
|
447 |
+
gr.Markdown("This space uses Aya Expanse for translating multilingual prompts and generating detailed image descriptions and [Flux Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) for Image Generation.")
|
448 |
+
|
449 |
+
# Image Generation
|
450 |
+
clear_button_img.click(lambda: None, None, input_img_prompt)
|
451 |
+
clear_button_img.click(lambda: None, None, generated_img_desc)
|
452 |
+
clear_button_img.click(lambda: None, None, generated_img)
|
453 |
+
|
454 |
+
submit_button_img.click(
|
455 |
+
generate_img_prompt,
|
456 |
+
inputs=[input_img_prompt],
|
457 |
+
outputs=[generated_img_desc],
|
458 |
+
)
|
459 |
+
|
460 |
+
generated_img_desc.change(
|
461 |
+
generate_image, #run_flux,
|
462 |
+
inputs=[generated_img_desc],
|
463 |
+
outputs=[generated_img],
|
464 |
+
show_progress="hidden",
|
465 |
+
)
|
466 |
+
|
467 |
+
# Audio Pipeline
|
468 |
+
clear_button_microphone.click(lambda: None, None, e2e_audio_file)
|
469 |
+
clear_button_microphone.click(lambda: None, None, e2e_audio_file_trans)
|
470 |
+
clear_button_microphone.click(lambda: None, None, e2e_aya_audio_response)
|
471 |
+
|
472 |
+
e2e_audio_file.change(
|
473 |
+
transcribe_and_stream,
|
474 |
+
inputs=[e2e_audio_file, show_info, stt_model],
|
475 |
+
outputs=[e2e_audio_file_trans],
|
476 |
+
show_progress="hidden",
|
477 |
+
).then(
|
478 |
+
aya_speech_text_response,
|
479 |
+
inputs=[e2e_audio_file_trans],
|
480 |
+
outputs=[e2e_audio_file_aya_response],
|
481 |
+
show_progress="minimal",
|
482 |
+
).then(
|
483 |
+
convert_text_to_speech,
|
484 |
+
inputs=[e2e_audio_file_aya_response],
|
485 |
+
outputs=[e2e_aya_audio_response],
|
486 |
+
show_progress="minimal",
|
487 |
+
)
|
488 |
+
|
489 |
+
demo.load(lambda: secrets.token_hex(16), None, token)
|
490 |
+
|
491 |
+
demo.queue(api_open=False, max_size=40).launch(show_api=False, allowed_paths=['/home/user/app'])
|