import gradio as gr from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5") model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5") def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'): input_ids = tokenizer('糾正句子裡的錯字: ' + sentence, return_tensors="pt").input_ids outputs = model.generate(input_ids, max_length=256) edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return edited_text with gr.Blocks() as demo: #設定輸入元件 sent = gr.Textbox(label="Sentence") # 設定輸出元件 output = gr.Textbox(label="Result") #設定按鈕 greet_btn = gr.Button("Correction") #設定按鈕點選事件 greet_btn.click(fn=cged_correction, inputs=name, outputs=output) demo.launch()