import gradio as gr from t5.t5_model import T5Model from transformers import AutoTokenizer, T5ForConditionalGeneration #tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5") #model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5") model = T5Model('t5', "CodeTed/Chinese_Spelling_Correction_T5", args={"eval_batch_size": 1}, cuda_device=-1, evaluate=True) def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'): for _ in range(3): outputs = model.predict(["糾正句子中的錯字:" + sentence + "_輸出句:"]) sentence = outputs[0] return outputs[0] with gr.Blocks() as demo: gr.Markdown( """ # 中文錯別字校正 - Chinese Spelling Correction ### Find Spelling Error and get the correction! Start typing below to see the correction. """ ) #設定輸入元件 sent = gr.Textbox(label="Sentence", placeholder="input the sentence") # 設定輸出元件 output = gr.Textbox(label="Result", placeholder="correction") #設定按鈕 greet_btn = gr.Button("Correction") #設定按鈕點選事件 greet_btn.click(fn=cged_correction, inputs=sent, outputs=output) demo.launch()