TedYeh
update app
3970b0a
raw
history blame
1.04 kB
import gradio as gr
from transformers import AutoTokenizer, T5ForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5")
model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5")
def cged_correction(sentence = '為了降低少子化,政府可以堆動獎勵生育的政策。'):
input_ids = tokenizer('糾正句子裡的錯字:' + sentence + "_輸出句:", return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_length=200)
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return edited_text
with gr.Blocks() as demo:
gr.Markdown(
"""
# Flip Text!
Start typing below to see the output.
"""
)
#設定輸入元件
sent = gr.Textbox(label="Sentence")
# 設定輸出元件
output = gr.Textbox(label="Result")
#設定按鈕
greet_btn = gr.Button("Correction")
#設定按鈕點選事件
greet_btn.click(fn=cged_correction, inputs=sent, outputs=output)
demo.launch()