ClueAI commited on
Commit
a2d4414
1 Parent(s): eed2ed5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +131 -0
app.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
4
+ tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v2")
5
+ model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v2")
6
+ # 使用
7
+ device='cpu'
8
+
9
+ def preprocess(text):
10
+ text = text.replace("\n", "\\n").replace("\t", "\\t")
11
+ return text
12
+
13
+ def postprocess(text):
14
+ return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20',' ')
15
+
16
+ def answer(text, sample=True, top_p=1, temperature=0.7):
17
+ '''sample:是否抽样。生成任务,可以设置为True;
18
+ top_p:0-1之间,生成的内容越多样'''
19
+ text = preprocess(text)
20
+ encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=768, return_tensors="pt").to(device)
21
+ if not sample:
22
+ out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, num_beams=1, length_penalty=0.6)
23
+ else:
24
+ out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3)
25
+ out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
26
+ return postprocess(out_text[0])
27
+
28
+ def clear_session():
29
+ return '', None
30
+
31
+ def chatyuan_bot(input, history):
32
+ history = history or []
33
+ if len(history) > 5:
34
+ history = history[-5:]
35
+
36
+ context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
37
+ print(context)
38
+
39
+ input_text = context + "\n用户:" + input + "\n小元:"
40
+ output_text = answer(input_text)
41
+ history.append((input, output_text))
42
+ print(history)
43
+ return history, history
44
+
45
+ block = gr.Blocks()
46
+
47
+ with block as demo:
48
+ gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
49
+ """)
50
+ chatbot = gr.Chatbot(label='ChatYuan')
51
+ message = gr.Textbox()
52
+ state = gr.State()
53
+ message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
54
+ with gr.Row():
55
+ clear_history = gr.Button("👋 清除历史对话")
56
+ clear = gr.Button('🧹 清除发送框')
57
+ send = gr.Button("🚀 发送")
58
+
59
+ send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
60
+ clear.click(lambda: None, None, message, queue=False)
61
+ clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)
62
+
63
+
64
+ # def ChatYuan(api_key, text_prompt):
65
+
66
+ # cl = clueai.Client(api_key,
67
+ # check_api_key=True)
68
+ # # generate a prediction for a prompt
69
+ # # 需要返回得分的话,指定return_likelihoods="GENERATION"
70
+ # prediction = cl.generate(model_name='ChatYuan-large', prompt=text_prompt)
71
+ # # print the predicted text
72
+ # print('prediction: {}'.format(prediction.generations[0].text))
73
+ # response = prediction.generations[0].text
74
+ # if response == '':
75
+ # response = "很抱歉,我无法回答这个问题"
76
+
77
+ # return response
78
+
79
+ # def chatyuan_bot_api(api_key, input, history):
80
+ # history = history or []
81
+
82
+ # if len(history) > 5:
83
+ # history = history[-5:]
84
+
85
+ # context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
86
+ # print(context)
87
+
88
+ # input_text = context + "\n用户:" + input + "\n小元:"
89
+ # output_text = ChatYuan(api_key, input_text)
90
+ # history.append((input, output_text))
91
+ # print(history)
92
+ # return history, history
93
+
94
+ block = gr.Blocks()
95
+
96
+ with block as demo_1:
97
+ gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
98
+ <font size=4>在使用此功能前,你需要有个API key. API key 可以通过这个<a href='https://www.clueai.cn/' target="_blank">平台</a>获取</font>
99
+ """)
100
+ api_key = gr.inputs.Textbox(label="请输入你的api-key(必填)", default="", type='password')
101
+ chatbot = gr.Chatbot(label='ChatYuan')
102
+ message = gr.Textbox()
103
+ state = gr.State()
104
+ message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
105
+ with gr.Row():
106
+ clear_history = gr.Button("👋 清除历史对话")
107
+ clear = gr.Button('🧹 清除发送框')
108
+ send = gr.Button("🚀 发送")
109
+
110
+ send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
111
+ clear.click(lambda: None, None, message, queue=False)
112
+ clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)
113
+
114
+ block = gr.Blocks()
115
+ with block as introduction:
116
+ gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
117
+
118
+ <font size=4>😉ChatYuan: 元语功能型对话大模型
119
+ <br>
120
+ <br>
121
+ 👏这个模型可以用于问答、结合上下文做对话、做各种生成任务, 包括创意性写作, 也能回答一些像法律、新冠等领域问题. 它基于PromptCLUE-large结合数亿条功能对话多轮对话数据进一步训练得到.<br>
122
+ <br>
123
+ 👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成. <br>
124
+ <br>
125
+ 🚀<a href='https://www.clueai.cn/chat' target="_blank">在线Demo</a> &nbsp; | &nbsp; <a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> &nbsp; | &nbsp; <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> &nbsp; | &nbsp; <a href='https://www.clueai.cn' target="_blank">官网体验场</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> &nbsp; | &nbsp; <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a> &nbsp;
126
+ </font>
127
+ """)
128
+
129
+
130
+ gui = gr.TabbedInterface(interface_list=[introduction,demo, demo_1], tab_names=["相关介绍","开源模型", "API调用"])
131
+ gui.launch(quiet=True,show_api=False, share = True)