File size: 11,047 Bytes
b112894
45630b8
b112894
 
 
 
 
 
 
 
 
 
 
 
45630b8
b112894
 
45630b8
b112894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1131e0
 
 
 
 
 
 
 
 
 
 
b112894
 
 
 
b1131e0
b112894
 
 
 
 
 
 
 
 
 
 
 
b1131e0
b112894
 
 
 
 
 
 
 
 
23939ce
b1131e0
b112894
23939ce
 
 
 
 
 
 
 
 
 
b112894
b1131e0
fef638f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b112894
 
 
 
 
 
 
27afa97
 
 
 
b112894
23939ce
 
27afa97
b112894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8322c54
b112894
 
 
 
 
 
23939ce
 
 
 
 
 
 
 
b112894
 
 
 
 
 
23939ce
b112894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27afa97
b112894
 
14c7cad
8322c54
b112894
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from __future__ import annotations
import gradio as gr
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
import subprocess
def runcmd(command):
    ret = subprocess.run(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE,encoding="utf-8",timeout=60)
    if ret.returncode == 0:
        print("success:",ret)
    else:
        print("error:",ret)
runcmd("pip3 install --upgrade clueai")

import clueai
cl = clueai.Client("", check_api_key=False)

'''
#luck_t2i_btn_1, #luck_s2i_btn_1, #luck_i2i_btn_1, #luck_ici_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }

        #luck_easy_btn_1, #luck_iti_btn_1, #luck_tsi_btn_1, #luck_isi_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }
'''
css='''
        .container { max-width: 800px; margin: auto; }
        #gen_btn_1{
            color: #fff;
            --tw-gradient-from: #f44336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #ff9800;
            border-color: #ff9800; 
        }
        #t2i_btn_1, #s2i_btn_1, #i2i_btn_1, #ici_btn_1, #easy_btn_1, #iti_btn_1, #tsi_btn_1, #isi_btn_1{
            color: #fff;
            --tw-gradient-from: #f44336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #ff9800;
            border-color: #ff9800;
        }
        

        #import_t2i_btn_1, #import_s2i_btn_1, #import_i2i_btn_1, #import_ici_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }

        #import_easy_btn_1, #import_iti_btn_1, #import_tsi_btn_1, #import_isi_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }

        #record_btn{
            
        }
        #record_btn > div > button > span {
            width: 2.375rem;
            height: 2.375rem;
        }
        #record_btn > div > button > span > span {
            width: 2.375rem;
            height: 2.375rem;
        }
        audio {
            margin-bottom: 10px;
        }
        div#record_btn > .mt-6{
            margin-top: 0!important;
        }
        div#record_btn > .mt-6 button {
            font-size: 1em;
            width: 100%;
            padding: 20px;
            height: 60px;
        }

        div#txt2img_tab {
            color: #BED336;
        }

'''

default_generate_config = {
        "do_sample": False,
        "top_p": 0,
        "top_k": 50,
        "max_length": 64,
        "temperature": 1,
        "num_beams": 1,
        "length_penalty": 0.6
    }

task_styles = []
examples_list = []
task_style_to_task_prefix = {}
import csv
examples_set = set()
def read_examples(input_file):
    header = True
    with open(input_file) as finput:
        csv_input = csv.reader(finput)
        for line in csv_input:
            if header:
                header = False
                continue
            task_style, task_prefix, example = line
            task_styles.append(task_style)
            task_style_to_task_prefix[task_style] = task_prefix
            examples_list.append([task_style, example])
            examples_set.add((task_style, example))
read_examples("./examples.csv")
#print(task_styles)
def preprocess(text, task):
    if task == "问答":
        text = text.replace("?", ":").replace("?", ":")
        text = text + ":"

    return task_style_to_task_prefix[task] + "\n" + text + "\n答案:"
      
def inference_gen(text, task, do_sample, top_p, top_k, max_token, temperature, beam_size, length_penalty):
    default_example = (task, text) in examples_set
    text = preprocess(text, task)
    generate_config = {
        "do_sample": do_sample,
        "top_p": top_p,
        "top_k": top_k,
        "max_length": max_token,
        "temperature": temperature,
        "num_beams": beam_size,
        "length_penalty": length_penalty
    }
    #print(generate_config)
    #print(text)
    default_example = default_example and generate_config == default_generate_config
    try_num = 3
    while try_num:
        try:
            if default_example:
                prediction = cl.generate(
                    model_name='clueai-base',
                    prompt=text)
            else:
                prediction = cl.generate(
                    model_name='clueai-base',
                    prompt=text,
                    generate_config=generate_config)
        except Exception as e:
            logger.error(f"error, {e}")
            return
        if prediction.generations[0].text != "含有违规词,不予展示":
            break
        try_num -= 1

    return prediction.generations[0].text
     
t2i_default_img_path_list = []
import base64, requests
from io import BytesIO
from PIL import Image
def luck_inference_image(text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale):
    return inference_image(text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale, luck=True)

def inference_image(text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale, luck=False):
    try:
        res = requests.get(f"https://www.clueai.cn/clueai/hf_text2image?text={text}&negative_prompt={n_text}\
&guidance_scale={guidance_scale}&num_inference_steps={steps}\
&style={style}&shape={shape}&clarity={clarity}&shape_scale={shape_scale}&luck={luck}")
    except Exception as e:
        logger.error(f"error, {e}")
        return 
    json_dict = res.json()
    file_path_list = []
    for i, image in enumerate(json_dict["images"]):
        image = image.encode('utf-8')
        binary_data = base64.b64decode(image)
        img_data = BytesIO(binary_data)
        img = Image.open(img_data)
        file_path_list.append(img)

    return file_path_list
image_styles = ['无', '细节大师', '对称美', '虚拟引擎', '空间感', '机械风格', '形状艺术', '治愈', '电影构图', '电影构图(治愈)', '荒芜感', '漫画', '逃离艺术', '斯皮尔伯格', '幻想', '杰作', '壁画', '朦胧', '黑白(3d)', '梵高', '毕加索', '莫奈', '丰子恺', '现代', '欧美']
with gr.Blocks(css=css, title="ClueAI") as demo:
    gr.Markdown('<h1><center><font color=red style="font-size:50px;">ClueAI全能师</font></center></h1>')
    with gr.TabItem("文本生成", id='_tab'):   
        with gr.Row(variant="compact").style( equal_height=True):
            text = gr.Textbox("标题:俄天然气管道泄漏爆炸",
                label="编辑内容", show_label=False, max_lines=20, 
                placeholder="在这里输入...",
            )
        task = gr.Dropdown(label="任务", show_label=True, choices=task_styles, value="标题生成文章")
        btn = gr.Button("生成",elem_id="gen_btn_1").style(full_width=False)
        with gr.Accordion("高级操作", open=False):
            do_sample = gr.Radio([True, False], label="是否采样", value=False)
            top_p = gr.Slider(0, 1, value=0, step=0.1, label="越大多样性越高, 按照概率采样")
            top_k = gr.Slider(1, 100, value=50, step=1, label="越大多样性越高,按照top k采样")
            max_token = gr.Slider(1, 512, value=64, step=1, label="生成的最大长度")
            temperature = gr.Slider(0,1, value=1, step=0.1, label="temperature, 越小下一个token预测概率越平滑")
            beam_size = gr.Slider(1, 4, value=1, step=1, label="beam size, 越大解码窗口越广,")
            length_penalty = gr.Slider(-1, 1, value=0.6, step=0.1, label="大于0鼓励长句子,小于0鼓励短句子")
        
        with gr.Row(variant="compact").style( equal_height=True):
            output_text = gr.Textbox(
                    label="输出", show_label=True, max_lines=50, 
                    placeholder="在这里展示结果",
                )
        gr.Examples(examples_list, [task, text], label="示例")
        input_params = [text, task, do_sample, top_p, top_k, max_token, temperature, beam_size, length_penalty]
        #text.submit(inference_gen, inputs=input_params, outputs=output_text)
        btn.click(inference_gen, inputs=input_params, outputs=output_text)

    with gr.TabItem("图像生成", id='txt2img_tab'):   
        with gr.Row(variant="compact").style( equal_height=True):
            text = gr.Textbox("美丽的风景",
                label="编辑内容", show_label=False, max_lines=2, 
                placeholder="在这里输入你的描述...",
            )
            btn = gr.Button("生成图像",elem_id="t2i_btn_1").style(full_width=False)
            
        with gr.Row().style( equal_height=True):
            generate_prompt_btn = gr.Button("手气不错", elem_id="luck_t2i_btn_1")

        style = gr.Dropdown(label="风格", show_label=True, choices=image_styles, value="无")
        with gr.Accordion("高级操作", open=False):
            n_text = gr.Textbox("",
                label="不想要生成的元素", show_label=True, max_lines=2, 
                placeholder="在这里输入你不需要包含的内容...",
            )     
            guidance_scale = gr.Slider(1, 20, value=7.5, step=0.5, label="和你的描述匹配程度,越大越匹配")
            shape = gr.Radio(["1x1", "16x9", "手机壁纸"], label="尺寸", value="1x1")
            shape_scale = gr.Radio([1, 2, 3], label="对图放大倍数", value=1)
            steps = gr.Slider(10, 150, value=50, step=1, label="越大质量越好,生成时间越长")
            clarity = gr.Radio(["标清", "高清"], label="清晰度", value="标清")

        gr.Examples(["秋日的晚霞", "星空", "室内装修", "婚礼鲜花"], text, label="示例")
        
        t2i_gallery = gr.Gallery(
            t2i_default_img_path_list,
            label="生成图像",
             show_label=False).style(
            grid=[2], height="auto"
        )

        input_params = [text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale]
        generate_prompt_btn.click(luck_inference_image, inputs=input_params, outputs=[t2i_gallery])
        text.submit(inference_image, inputs=input_params, outputs=t2i_gallery)
        btn.click(inference_image, inputs=input_params, outputs=t2i_gallery)

#demo.queue(concurrency_count=3)
demo.launch()