import gradio as gr from openai import OpenAI from huggingface_hub import InferenceClient from tenacity import retry, wait_random_exponential, stop_after_attempt OPENAI_KEY = os.getenv("OPENAI_KEY") client = OpenAI(api_key=OPEN_AI_KEY) def get_current_weather(location, unit="celsius"): """Get the current weather in a given location""" if "taipei" in location.lower(): return json.dumps({"location": "Taipei", "temperature": "10", "unit": unit}) else: return json.dumps({"location": location, "temperature": "unknown"}) @retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3)) def chat_completion_request(messages, tools=None, tool_choice=None, model=GPT_MODEL): try: response = client.chat.completions.create( model=model, messages=messages, tools=tools, tool_choice=tool_choice, ) return response except Exception as e: print("Unable to generate ChatCompletion response") print(f"Exception: {e}") return e tools = [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "unit"], }, } } ] def respond( message, history: list[tuple[str, str]], system_message, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = chat_completion_request(messages, tools=tools, tool_choice='auto') response_message = response.choices[0].message tool_calls = response_message.tool_calls if tool_calls: available_functions = { "get_current_weather": get_current_weather, } messages.append(response_message) for tool_call in tool_calls: function_name = tool_call.function.name function_to_call = available_functions[function_name] function_args = json.loads(tool_call.function.arguments) function_response = function_to_call( location=function_args.get("location"), unit=function_args.get("unit"), ) messages.append( { "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response, } ) second_response = chat_completion_request(messages) print(second_response) return second_response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()