ChenyuRabbitLove's picture
Update app.py
411b212 verified
raw
history blame
3.24 kB
import os
import json
import gradio as gr
from openai import OpenAI
from tenacity import retry, wait_random_exponential, stop_after_attempt
from functions_definition import get_functions, get_openai_function_tools
OPENAI_KEY = os.getenv("OPENAI_KEY")
client = OpenAI(api_key=OPENAI_KEY)
@retry(wait=wait_random_exponential(multiplier=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, tools=None, tool_choice=None):
print(f"query message {messages}")
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
tools=tools,
tool_choice=tool_choice,
)
print(response.choices[0].message.content)
return response
except Exception as e:
print("Unable to generate ChatCompletion response!")
print(f"Exception: {e}")
return e
def respond(
message,
history: list[tuple[str, str]],
):
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful agent"}],
}
]
for val in history:
if val[0]:
messages.append(
{"role": "user", "content": [{"type": "text", "text": val[0]}]}
)
if val[1]:
messages.append(
{"role": "assistant", "content": [{"type": "text", "text": val[1]}]}
)
messages.append({"role": "user", "content": [{"type": "text", "text": message}]})
response = chat_completion_request(
messages, tools=get_openai_function_tools(), tool_choice="auto"
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
if tool_calls:
available_functions = get_functions()
messages.append(response_message)
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
type=function_args.get("type"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
)
second_response = chat_completion_request(messages)
messages.append(
{
"role": "assistant",
"content": [
{"type": "text", "text": second_response.choices[0].message.content}
],
}
)
return second_response.choices[0].message.content
messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": response.choices[0].message.content}],
}
)
return response.choices[0].message.content
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(respond, title="Function Calling Demo")
if __name__ == "__main__":
demo.launch()