Spaces:
Running
Running
import os | |
import json | |
import gradio as gr | |
import numpy as np | |
from google.oauth2.service_account import Credentials | |
from google.cloud import bigquery | |
from theme import Seafoam | |
seafoam = Seafoam() | |
SCOPES = ["https://www.googleapis.com/auth/bigquery"] | |
SERVICE_ACCOUNT_INFO = os.getenv("GBQ_TOKEN") | |
service_account_info_dict = json.loads(SERVICE_ACCOUNT_INFO) | |
creds = Credentials.from_service_account_info( | |
service_account_info_dict, scopes=SCOPES | |
) | |
client = bigquery.Client(credentials=creds, project=service_account_info_dict['project_id']) | |
with open('achievement.html', 'r', encoding='utf-8') as file: | |
html = file.read() | |
html = "<div style='max-width:100%; max-height:360px; overflow:auto'>" + html | |
css=""" | |
#user_avatar { | |
background-color: transparent !important; | |
border-radius: 50% !important; | |
box-shadow: 0 10px 15px rgba(0,0,0,0.1); | |
border-color: #fff !important; | |
} | |
#user_avatar > div > img { | |
} | |
#user_avatar_description h1{ | |
font-size: 2.5rem; | |
text-align: center; | |
} | |
#pet_avatar_description h1{ | |
font-size: 2rem; | |
text-align: center; | |
} | |
#badge_avatar_description h1{ | |
font-size: 2rem; | |
text-align: center; | |
} | |
#adventure_description h1{ | |
font-size: 2rem; | |
text-align: center; | |
} | |
#achievement_log { | |
margin: 2.5rem auto 0 auto; | |
} | |
#pet_gallery .grid-wrap button { | |
margin: .5vh; | |
background: transparent !important; | |
border-color: transparent !important; | |
height: 150px !important; | |
width: 6vh !important; | |
border-radius: 20px; | |
box-shadow: 0 0 10px rgba(0,0,0,0.3); | |
} | |
#pet_gallery .grid-container { | |
grid-template-columns: repeat(30, minmax(6vh, 1fr)); | |
} | |
#badge_gallery .grid-wrap button { | |
margin: .5vh; | |
height: 150px !important; | |
width: 10vh !important; | |
background: transparent !important; | |
border-color: transparent !important; | |
border-radius: 20px; | |
box-shadow: 0 0 10px rgba(0,0,0,0.3); | |
backdrop-filter: blur(10px); | |
} | |
::-webkit-scrollbar { | |
width: 5px; | |
height: 10px; | |
} | |
[data-testid="block-label"] { | |
opacity: 0; | |
} | |
[aria-label="Share"] { | |
opacity: 0; | |
} | |
""" | |
# start of gradio interface | |
with gr.Blocks(theme=seafoam, css=css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1,): | |
pet_gallery = gr.Gallery(['partner1.png', 'partner2.png', 'partner3.png', 'partner4.png'] * 2, label="夥伴", preview=False, elem_id='pet_gallery', columns=30, height=200) | |
pet_description = gr.Markdown('# 夥伴', elem_id='pet_avatar_description') | |
badge_gallery = gr.Gallery(['badge.png', 'badge2.png', 'badge3.png', 'badge4.png'] * 2, label="徽章", preview=False, elem_id='badge_gallery', columns=30, height=200) | |
badge_description = gr.Markdown('# 徽章', elem_id='badge_avatar_description') | |
with gr.Column(scale=1): | |
avatar = gr.Gallery(['avatar.png', 'avatar2.png'], preview=True, elem_id='user_avatar') | |
avatar_description = gr.Markdown('# 光束守護者', elem_id='user_avatar_description') | |
with gr.Column(scale=1): | |
description = gr.Markdown('# 冒險階段', elem_id='adventure_description') | |
with open('progress_bar.html', 'r', encoding='utf-8') as file: | |
progress_bar_html = file.read() | |
progress_bar_html = "<div style='max-width:100%; max-height:360px; overflow:auto'>" + progress_bar_html | |
progress_bar = gr.HTML(progress_bar_html,) | |
with open('stage_desc.html', 'r', encoding='utf-8') as file: | |
stage_desc_html = file.read() | |
stage_desc_html = "<div style='max-width:100%; max-height:360px; overflow:auto'>" + stage_desc_html | |
stage_desc = gr.HTML(stage_desc_html,) | |
with gr.Row(): | |
f = gr.HTML(html, label="Achievement Log", elem_id="achievement_log") | |
with gr.Row(): | |
i = gr.Textbox(value='0', elem_id="test1") | |
o = gr.Textbox() | |
b = gr.Button(elem_id="test2") | |
df = gr.DataFrame() | |
def run_query(user_id): | |
QUERY = ( | |
'SELECT created_at, points, user_role, joined, developer FROM `datastore_backup.UserData`', | |
f'WHERE user_id = {user_id}' | |
) | |
query_job = client.query(QUERY) | |
print('Running query') | |
query_result = query_job.result() | |
print('Query complete') | |
df = query_result.to_dataframe() | |
print('Convert to dataframe') | |
# Select a subset of columns | |
df = df[["created_at", "points", "user_role", "joined", "developer"]] | |
# Convert numeric columns to standard numpy types | |
print('Convert to numpy') | |
df = df.astype({"points": np.int64}) | |
return df | |
b.click(run_query, i, df,) | |
if __name__ == "__main__": | |
demo.launch() | |