Spaces:
Running
Running
File size: 19,533 Bytes
115ff47 e1f9684 115ff47 96a04e2 90437ed 96a04e2 e1f9684 90437ed 96a04e2 115ff47 96a04e2 115ff47 9be0fe4 115ff47 9be0fe4 115ff47 96a04e2 115ff47 90437ed 115ff47 e1f9684 115ff47 e1f9684 115ff47 46b1559 115ff47 90437ed 115ff47 46b1559 115ff47 e1f9684 115ff47 e1f9684 115ff47 e1f9684 115ff47 90437ed 115ff47 46b1559 115ff47 90437ed 115ff47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import logging
import json
import time
import io
import os
import re
import requests
import textwrap
import random
import hashlib
from datetime import datetime
from PIL import Image, ImageDraw, ImageFilter, ImageFont
import anthropic_bedrock
import gradio as gr
from opencc import OpenCC
from openai import OpenAI
from anthropic_bedrock import AnthropicBedrock, HUMAN_PROMPT, AI_PROMPT
from google.auth.transport.requests import Request
from google.oauth2.service_account import Credentials
from google import auth
from google.cloud import bigquery
from google.cloud import storage
from google.cloud import aiplatform
from vertexai.preview.generative_models import GenerativeModel
SERVICE_ACCOUNT_INFO = os.getenv("GBQ_TOKEN")
SCOPES = ["https://www.googleapis.com/auth/cloud-platform"]
service_account_info_dict = json.loads(SERVICE_ACCOUNT_INFO)
aiplatform.init(
project='junyiacademy',
service_account=service_account_info_dict,
)
creds = Credentials.from_service_account_info(service_account_info_dict, scopes=SCOPES)
gbq_client = bigquery.Client(
credentials=creds, project=service_account_info_dict["project_id"]
)
gcs_client = storage.Client(
credentials=creds, project=service_account_info_dict["project_id"]
)
class CompletionReward:
def __init__(self):
self.player_backend_user_id = None
self.player_name = None
self.background_url = None
self.player_selected_character = None
self.player_selected_model = None
self.player_selected_paragraph = None
self.paragraph_openai = None
self.paragraph_aws = None
self.paragraph_google = None
self.paragraph_mtk = None
self.player_certificate_url = None
self.openai_agent = OpenAIAgent()
self.aws_agent = AWSAgent()
self.google_agent = GoogleAgent()
self.mtk_agent = MTKAgent()
self.shuffled_response_order = {}
self.paragraph_map = {
"openai": self.paragraph_openai,
"aws": self.paragraph_aws,
"google": self.paragraph_google,
"mtk": self.paragraph_mtk,
}
def get_llm_response(self, player_logs):
agents_responses = {
"openai": self.openai_agent.get_story(player_logs),
"aws": self.aws_agent.get_story(player_logs),
"google": self.google_agent.get_story(player_logs),
"mtk": self.mtk_agent.get_story(player_logs),
}
self.paragraph_openai = agents_responses["openai"]
self.paragraph_aws = agents_responses["aws"]
self.paragraph_google = agents_responses["google"]
self.paragraph_mtk = agents_responses["mtk"]
response_items = list(agents_responses.items())
random.shuffle(response_items)
self.shuffled_response_order = {
str(index): agent for index, (agent, _) in enumerate(response_items)
}
shuffled_responses = tuple(response for _, response in response_items)
return (
[(None, shuffled_responses[0])],
[(None, shuffled_responses[1])],
[(None, shuffled_responses[2])],
[(None, shuffled_responses[3])],
)
def set_player_name(self, player_name, player_backend_user_id):
self.player_backend_user_id = player_backend_user_id
self.player_name = player_name
def set_background_url(self, background_url):
self.background_url = background_url
def set_player_backend_user_id(self, player_backend_user_id):
self.player_backend_user_id = player_backend_user_id
def set_player_selected_character(self, player_selected_character):
character_map = {
"露米娜": "0",
"索拉拉": "1",
"薇丹特": "2",
"蔚藍": "3",
}
self.player_selected_character = player_selected_character
self.player_selected_model = self.shuffled_response_order[
character_map[player_selected_character]
]
self.player_selected_paragraph = self.get_paragraph_by_model(
self.player_selected_model
)
def get_paragraph_by_model(self, model):
return getattr(self, f"paragraph_{model}", None)
def create_certificate(self):
image_url = self.openai_agent.get_background()
self.set_background_url(image_url)
source_file = ImageProcessor.generate_reward(
image_url,
self.player_name,
self.player_selected_paragraph,
self.player_backend_user_id,
)
public_url = self.upload_blob_and_get_public_url(
"mes_completion_rewards", source_file, f"2023_mes/{source_file}"
)
self.player_certificate_url = public_url
return gr.Image(public_url, visible=True)
def to_dict(self):
return {
"player_backend_user_id": self.player_backend_user_id,
"player_name": self.player_name,
"background_url": self.background_url,
"player_selected_model": self.player_selected_model,
"player_selected_paragraph": self.player_selected_paragraph,
"paragraph_openai": self.paragraph_openai,
"paragraph_aws": self.paragraph_aws,
"paragraph_google": self.paragraph_google,
"paragraph_mtk": self.paragraph_mtk,
"player_certificate_url": self.player_certificate_url,
"created_at_date": datetime.now().date(),
}
def insert_data_into_bigquery(self, client, dataset_id, table_id, rows_to_insert):
table_ref = client.dataset(dataset_id).table(table_id)
table = client.get_table(table_ref)
errors = client.insert_rows(table, rows_to_insert)
if errors:
logging.info("Errors occurred while inserting rows:")
for error in errors:
print(error)
else:
logging.info(f"Inserted {len(rows_to_insert)} rows successfully.")
def complete_reward(
self,
):
insert_row = self.to_dict()
self.insert_data_into_bigquery(
gbq_client, "streaming_log", "log_mes_completion_rewards", [insert_row]
)
logging.info(
f"Player {insert_row['player_backend_user_id']} rendered successfully."
)
with open("./data/completion_reward_issue_status.json") as f:
completion_reward_issue_status_dict = json.load(f)
completion_reward_issue_status_dict[
insert_row["player_backend_user_id"]
] = self.player_certificate_url
with open("./data/completion_reward_issue_status.json", "w") as f:
json.dump(completion_reward_issue_status_dict, f)
def upload_blob_and_get_public_url(
self, bucket_name, source_file_name, destination_blob_name
):
"""Uploads a file to the bucket and makes it publicly accessible."""
# Initialize a storage client
bucket = gcs_client.bucket(bucket_name)
blob = bucket.blob(destination_blob_name)
# Upload the file
blob.upload_from_filename(source_file_name)
# The public URL can be used to directly access the uploaded file via HTTP
public_url = blob.public_url
logging.info(f"File {source_file_name} uploaded to {destination_blob_name}.")
return public_url
class OpenAIAgent:
def __init__(self):
self.temperature = 0.8
self.frequency_penalty = 0
self.presence_penalty = 0
self.max_tokens = 2048
def get_story(self, user_log):
system_prompt = """
我正在舉辦一個學習型的活動,參與活動的學生為 1-9 年級,我為他們設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
- 以「你」稱呼學生
- 請用 500 字以內的短篇故事
- 試著合併故事記錄成一段連貫、有吸引力的故事
- 請使用 zh_TW
最後,I'll tip $200
"""
user_log = f"""
```{user_log}
```
"""
messages = [
{
"role": "system",
"content": f"{system_prompt}",
},
{
"role": "user",
"content": f"{user_log}",
},
]
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
response = None
retry_attempts = 0
while retry_attempts < 5:
try:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=self.temperature,
max_tokens=self.max_tokens,
frequency_penalty=self.frequency_penalty,
presence_penalty=self.presence_penalty,
)
chinese_converter = OpenCC("s2tw")
return chinese_converter.convert(response.choices[0].message.content)
except Exception as e:
retry_attempts += 1
logging.error(f"OpenAI Attempt {retry_attempts}: {e}")
time.sleep(1 * retry_attempts)
def get_background(self):
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
image_url = None
retry_attempts = 0
while retry_attempts < 5:
try:
logging.info("Generating image...")
response = client.images.generate(
model="dall-e-3",
prompt="Create an image in a retro Ghibli style, with a focus on a universe theme. The artwork should maintain the traditional hand-drawn animation look characteristic of Ghibli. Imagine a scene set in outer space or a fantastical cosmic environment, rich with vibrant and varied color palettes to capture the mystery and majesty of the universe. The background should be detailed, showcasing stars, planets, and nebulae, blending the Ghibli style's nostalgia and emotional depth with the awe-inspiring aspects of space. The overall feel should be timeless, merging the natural wonder of the cosmos with the storytelling and emotional resonance typical of the retro Ghibli aesthetic. Soft lighting and gentle shading should be used to enhance the dreamlike, otherworldly quality of the scene.",
size="1024x1024",
quality="standard",
n=1,
)
image_url = response.data[0].url
return image_url
except Exception as e:
retry_attempts += 1
logging.error(f"DALLE Attempt {retry_attempts}: {e}")
time.sleep(1 * retry_attempts) # exponential backoff
class AWSAgent:
def get_story(self, user_log):
system_prompt = """
我正在舉辦一個學習型的活動,參與活動的學生為 1-9 年級,我為他們設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
- 以「你」稱呼學生
- 請用 500 字以內的短篇故事
- 試著合併故事記錄成一段連貫、有吸引力的故事
- 請使用 zh_TW
最後,I'll tip $200
"""
user_log = f"""
```{user_log}
```
"""
client = AnthropicBedrock(
aws_access_key=os.getenv("AWS_ACCESS_KEY"),
aws_secret_key=os.getenv("AWS_SECRET_KEY"),
aws_region="us-west-2",
)
retry_attempts = 0
while retry_attempts < 5:
try:
completion = client.completions.create(
model="anthropic.claude-v2",
max_tokens_to_sample=2048,
prompt=f"{anthropic_bedrock.HUMAN_PROMPT}{system_prompt},以下是我的故事紀錄```{user_log}``` {anthropic_bedrock.AI_PROMPT}",
)
chinese_converter = OpenCC("s2tw")
return chinese_converter.convert(completion.completion)
except Exception as e:
retry_attempts += 1
logging.error(f"AWS Attempt {retry_attempts}: {e}")
time.sleep(1 * retry_attempts)
class GoogleAgent:
def get_story(self, user_log):
system_prompt = """
我正在舉辦一個學習型的活動,參與活動的學生為 1-9 年級,我為他們設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
- 以「你」稱呼學生
- 請用 500 字以內的短篇故事
- 試著合併故事記錄成一段連貫、有吸引力的故事
- 請使用 zh_TW
最後,I'll tip $200
"""
user_log = f"""
```{user_log}
```
"""
gemini_pro_model = GenerativeModel("gemini-pro")
retry_attempts = 0
while retry_attempts < 5:
try:
logging.info("Google Generating response...")
model_response = gemini_pro_model.generate_content(f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```")
chinese_converter = OpenCC("s2tw")
return chinese_converter.convert(model_response.candidates[0].content.parts[0].text)
except Exception as e:
retry_attempts += 1
logging.error(f"Google Attempt {retry_attempts}: {e}")
time.sleep(1 * retry_attempts)
class MTKAgent:
def get_story(self, user_log):
system_prompt = """
我正在舉辦一個學習型的活動,參與活動的學生為 1-9 年級,我為他們設計了一個獨特的故事機制,每天每個學生都會收到屬於自己獨特的冒險紀錄,現在我需要你協助我將這些冒險紀錄,製作成一段冒險故事,請
- 以「你」稱呼學生
- 請用 500 字以內的短篇故事
- 試著合併故事記錄成一段連貫、有吸引力的故事
- 請使用 zh_TW
"""
user_log = f"""
```{user_log}
```
"""
BASE_URL = "http://35.229.245.251:8008/v1"
TOKEN = os.getenv("MTK_TOKEN")
MODEL_NAME = "model7-c-chat"
TEMPERATURE = 1
MAX_TOKENS = 1024
TOP_P = 0
PRESENCE_PENALTY = 0
FREQUENCY_PENALTY = 0
message = f"{system_prompt}, 以下是我的冒險故事 ```{user_log}```"
url = os.path.join(BASE_URL, "chat/completions")
headers = {
"accept": "application/json",
"Authorization": f"Bearer {TOKEN}",
"Content-Type": "application/json",
}
data = {
"model": MODEL_NAME,
"messages": str(message),
"temperature": TEMPERATURE,
"n": 1,
"max_tokens": MAX_TOKENS,
"stop": "",
"top_p": TOP_P,
"logprobs": 0,
"echo": False,
"presence_penalty": PRESENCE_PENALTY,
"frequency_penalty": FREQUENCY_PENALTY,
}
retry_attempts = 0
while retry_attempts < 5:
try:
response = requests.post(
url, headers=headers, data=json.dumps(data)
).json()
response_text = response["choices"][0]["message"]["content"]
matched_content = re.search("```(.+)", response_text, re.DOTALL)
extracted_content = (
matched_content.group(1).strip() if matched_content else None
)
chinese_converter = OpenCC("s2tw")
if extracted_content:
return chinese_converter.convert(extracted_content)
else:
return chinese_converter.convert(response_text)
except Exception as e:
retry_attempts += 1
logging.error(f"MTK Attempt {retry_attempts}: {e}")
time.sleep(1 * retry_attempts)
class ImageProcessor:
@staticmethod
def draw_shadow(
image, box, radius, offset=(10, 10), shadow_color=(0, 0, 0, 128), blur_radius=5
):
shadow_image = Image.new("RGBA", image.size, (0, 0, 0, 0))
shadow_draw = ImageDraw.Draw(shadow_image)
shadow_box = [
box[0] + offset[0],
box[1] + offset[1],
box[2] + offset[0],
box[3] + offset[1],
]
shadow_draw.rounded_rectangle(shadow_box, fill=shadow_color, radius=radius)
shadow_image = shadow_image.filter(ImageFilter.GaussianBlur(blur_radius))
image.paste(shadow_image, (0, 0), shadow_image)
@staticmethod
def generate_reward(url, player_name, paragraph, player_backend_user_id):
retry_attempts = 0
while retry_attempts < 5:
try:
response = requests.get(url)
break
except requests.RequestException as e:
retry_attempts += 1
logging.error(f"Attempt {retry_attempts}: {e}")
time.sleep(1 * retry_attempts) # exponential backoff
image_bytes = io.BytesIO(response.content)
img = Image.open(image_bytes)
tmp_img = Image.new("RGBA", img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(tmp_img)
# Draw the box
left, right = 50, img.width - 50
box_height = 500
top = (img.height - box_height) // 2
bottom = (img.height + box_height) // 2
border_radius = 20
# Draw the rounded rectangle
fill_color = (255, 255, 255, 220)
draw.rounded_rectangle(
[left, top, right, bottom],
fill=fill_color,
outline=None,
radius=border_radius,
)
img.paste(Image.alpha_composite(img.convert("RGBA"), tmp_img), (0, 0), tmp_img)
draw = ImageDraw.Draw(img)
# Draw the text
title_font = ImageFont.truetype("NotoSansTC-Bold.ttf", 36)
body_font = ImageFont.truetype("NotoSansTC-Light.ttf", 12)
# Title text
title = f"光束守護者 - {player_name} 的冒險故事"
title_x, title_y = left + 20, top + 20 # Adjust padding as needed
draw.text((title_x, title_y), title, font=title_font, fill="black")
# Paragraph text with newlines
body_x, body_y = left + 20, title_y + 60 # Adjust position as needed
for line in paragraph.split("\n"):
wrapped_lines = textwrap.wrap(line, width=55)
for wrapped_line in wrapped_lines:
draw.text((body_x, body_y), wrapped_line, font=body_font, fill="black")
body_y += 30
# Save the image with the text
def get_md5_hash(text):
return hashlib.md5(text.encode("utf-8")).hexdigest()
updated_image_path = f"certificate_{get_md5_hash(player_backend_user_id)}.png"
img.save(updated_image_path)
return updated_image_path
|