import sys sys.path.append('./') from diffusers import ( StableDiffusionPipeline, UNet2DConditionModel, DPMSolverMultistepScheduler, ) from arc2face import CLIPTextModelWrapper, project_face_embs import torch from insightface.app import FaceAnalysis from PIL import Image import numpy as np import random import gradio as gr # global variable MAX_SEED = np.iinfo(np.int32).max if torch.cuda.is_available(): device = "cuda" dtype = torch.float16 else: device = "cpu" dtype = torch.float32 # download models from huggingface_hub import hf_hub_download hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models") hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models") hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models") hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models") hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arcface.onnx", local_dir="./models/antelopev2") # Load face detection and recognition package if device=="cuda": app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) else: app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) # Load pipeline base_model = 'runwayml/stable-diffusion-v1-5' encoder = CLIPTextModelWrapper.from_pretrained( 'models', subfolder="encoder", torch_dtype=dtype ) unet = UNet2DConditionModel.from_pretrained( 'models', subfolder="arc2face", torch_dtype=dtype ) pipeline = StableDiffusionPipeline.from_pretrained( base_model, text_encoder=encoder, unet=unet, torch_dtype=dtype, safety_checker=None ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(device) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def get_example(): case = [ [ './assets/examples/freeman.jpg', ], [ './assets/examples/lily.png', ], [ './assets/examples/joacquin.png', ], [ './assets/examples/jackie.png', ], [ './assets/examples/freddie.png', ], [ './assets/examples/hepburn.png', ], ] return case def run_example(img_file): return generate_image(img_file, 25, 3, 23, 2) def generate_image(image_path, num_steps, guidance_scale, seed, num_images, progress=gr.Progress(track_tqdm=True)): if image_path is None: raise gr.Error(f"Cannot find any input face image! Please upload a face image.") img = np.array(Image.open(image_path))[:,:,::-1] # Face detection and ID-embedding extraction faces = app.get(img) if len(faces) == 0: raise gr.Error(f"Face detection failed! Please try with another image") faces = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # select largest face (if more than one detected) id_emb = torch.tensor(faces['embedding'], dtype=dtype)[None].to(device) id_emb = id_emb/torch.norm(id_emb, dim=1, keepdim=True) # normalize embedding id_emb = project_face_embs(pipeline, id_emb) # pass throught the encoder generator = torch.Generator(device=device).manual_seed(seed) print("Start inference...") images = pipeline( prompt_embeds=id_emb, num_inference_steps=num_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images, generator=generator ).images return images ### Description title = r"""