import sklearn from os import O_ACCMODE import gradio as gr import joblib from transformers import pipeline import requests.exceptions from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load app = gr.Blocks() model_id_1 = "juliensimon/distilbert-amazon-shoe-reviews" model_id_2 = "juliensimon/distilbert-amazon-shoe-reviews" def load_agent(model_id): """ This function load the agent's results """ # Load the metrics metadata = get_metadata(model_id) # get predictions predictions = predict(model_id) return model_id, predictions def get_metadata(model_id): """ Get the metadata of the model repo :param model_id: :return: metadata """ try: readme_path = hf_hub_download(model_id, filename="README.md") metadata = metadata_load(readme_path) print(metadata) return metadata except requests.exceptions.HTTPError: return None classifier = pipeline("text-classification", model="juliensimon/distilbert-amazon-shoe-reviews") def predict(review): prediction = classifier(review) print(prediction) stars = prediction[0]['label'] stars = (int)(stars.split('_')[1])+1 score = 100*prediction[0]['score'] return "{} {:.0f}%".format("\U00002B50"*stars, score) with app: gr.Markdown( """ # Compare Sentiment Analysis Models Type text to predict sentiment. """) with gr.Row(): inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.") out_2 = gr.Textbox(label="Prediction") gr.Markdown( """ Model Predictions """) with gr.Row(): model1_input = gr.Textbox(label="Model 1") with gr.Row(): btn = gr.Button("Prediction for Model 1") classifier = pipeline("text-classification", model=model_id_1) btn.click(fn=predict, inputs=inp_1, outputs=out_2) with gr.Row(): model2_input = gr.Textbox(label="Model 2") with gr.Row(): btn = gr.Button("Prediction for Model 2") classifier = pipeline("text-classification", model=model_id_2) btn.click(fn=predict, inputs=inp_1, outputs=out_2) app.launch()