# import sklearn from os import O_ACCMODE import gradio as gr import joblib from transformers import pipeline import requests.exceptions from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load app = gr.Blocks() model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment" model_id_2 = "juliensimon/distilbert-amazon-shoe-reviews" def load_agent(model_id): """ This function load the agent's results """ # Load the metrics metadata = get_metadata(model_id) # get predictions predictions = predict(model_id) return model_id, predictions def get_metadata(model_id): """ Get the metadata of the model repo :param model_id: :return: metadata """ try: readme_path = hf_hub_download(model_id, filename="README.md") metadata = metadata_load(readme_path) print(metadata) return metadata except requests.exceptions.HTTPError: return None def get_prediction(model_id): classifier = pipeline("text-classification", model=model_id) def predict(review): prediction = classifier(review) print(prediction) stars = prediction[0]['label'] stars = (int)(stars.split('_')[1])+1 score = 100*prediction[0]['score'] return "{} {:.0f}%".format("\U00002B50"*stars, score) return predict with app: gr.Markdown( """ # Compare Sentiment Analysis Models Type text to predict sentiment. """) with gr.Row(): inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.") gr.Markdown( """ **Model Predictions** """) gr.Markdown( """ Model 1 = nlptown/bert-base-multilingual-uncased-sentiment """) with gr.Row(): btn1 = gr.Button("Predict for Model 1") with gr.Row(): out_1 = gr.Textbox(label="Prediction for Model 1") # classifier = pipeline("text-classification", model) btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1) gr.Markdown( """ Model 2 = juliensimon/distilbert-amazon-shoe-reviews """) with gr.Row(): btn2 = gr.Button("Predict for Model 2") with gr.Row(): out_2 = gr.Textbox(label="Prediction for Model 2") classifier = pipeline("text-classification", model=model_id_2) btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2) app.launch()