CK42 commited on
Commit
e50a51c
1 Parent(s): 81d1362

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -14
app.py CHANGED
@@ -1,5 +1,4 @@
1
-
2
- # import sklearn
3
  from os import O_ACCMODE
4
  import gradio as gr
5
  import joblib
@@ -41,9 +40,10 @@ def get_metadata(model_id):
41
  return metadata
42
  except requests.exceptions.HTTPError:
43
  return None
 
 
44
 
45
- def predict(review, model_id):
46
- classifier = pipeline("text-classification", model=model_id)
47
  prediction = classifier(review)
48
  print(prediction)
49
  stars = prediction[0]['label']
@@ -62,16 +62,18 @@ with app:
62
  inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")
63
  out_2 = gr.Textbox(label="Prediction")
64
 
 
65
  gr.Markdown(
66
  """
67
  Model Predictions
68
  """)
69
-
70
  with gr.Row():
71
  model1_input = gr.Textbox(label="Model 1")
72
  with gr.Row():
73
  btn = gr.Button("Prediction for Model 1")
74
- btn.click(fn=load_agent(model_id_1), inputs=inp_1, outputs=out_2)
 
75
 
76
 
77
 
@@ -79,13 +81,7 @@ with app:
79
  model2_input = gr.Textbox(label="Model 2")
80
  with gr.Row():
81
  btn = gr.Button("Prediction for Model 2")
82
- btn.click(fn=load_agent(model_id_2), inputs=inp_1, outputs=out_2)
83
-
84
-
85
- # app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
86
-
87
- # examples = gr.Examples(examples=[["juliensimon/distilbert-amazon-shoe-reviews","juliensimon/distilbert-amazon-shoe-reviews"]],
88
- # inputs=[model1_input, model2_input])
89
-
90
 
91
  app.launch()
 
1
+ import sklearn
 
2
  from os import O_ACCMODE
3
  import gradio as gr
4
  import joblib
 
40
  return metadata
41
  except requests.exceptions.HTTPError:
42
  return None
43
+
44
+ classifier = pipeline("text-classification", model="juliensimon/distilbert-amazon-shoe-reviews")
45
 
46
+ def predict(review):
 
47
  prediction = classifier(review)
48
  print(prediction)
49
  stars = prediction[0]['label']
 
62
  inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")
63
  out_2 = gr.Textbox(label="Prediction")
64
 
65
+
66
  gr.Markdown(
67
  """
68
  Model Predictions
69
  """)
70
+
71
  with gr.Row():
72
  model1_input = gr.Textbox(label="Model 1")
73
  with gr.Row():
74
  btn = gr.Button("Prediction for Model 1")
75
+ classifier = pipeline("text-classification", model=model_id_1)
76
+ btn.click(fn=predict, inputs=inp_1, outputs=out_2)
77
 
78
 
79
 
 
81
  model2_input = gr.Textbox(label="Model 2")
82
  with gr.Row():
83
  btn = gr.Button("Prediction for Model 2")
84
+ classifier = pipeline("text-classification", model=model_id_2)
85
+ btn.click(fn=predict, inputs=inp_1, outputs=out_2)
 
 
 
 
 
 
86
 
87
  app.launch()