Spaces:
Running
Running
File size: 3,406 Bytes
0fb1535 11999c8 37b8290 7af13f4 f04ccc3 f057f88 d68a14d a097563 d68a14d f057f88 654ecef db66b47 b2f58d6 db66b47 534efde 654ecef db66b47 7af13f4 d3d7595 7af13f4 06b445f a14bbf4 48193db 75f1b92 81d1362 03b5ddd 81d1362 d68a14d 29d2c40 406cf9a 29d2c40 406cf9a f057f88 406cf9a 29d2c40 406cf9a a097563 29d2c40 9fed4f1 a097563 406cf9a 29d2c40 406cf9a d2c2b6b 6d4000b 326066b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# # to correct runtime error 01-03-2024
# import os
# os.system("pip uninstall -y gradio")
# os.system("pip install gradio==2.6.4") # to correct 'Blocks' Runtime error from 2.6.4 to Gradio==2.6.4
import gradio as gr
from transformers import pipeline
app = gr.Blocks()
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
model_id_2 = "microsoft/deberta-xlarge-mnli"
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
model_id_4 = "lordtt13/emo-mobilebert"
model_id_5 = "juliensimon/reviews-sentiment-analysis"
model_id_6 = "sbcBI/sentiment_analysis_model"
def parse_output(output_json):
list_pred=[]
for i in range(len(output_json[0])):
label = output_json[0][i]['label']
score = output_json[0][i]['score']
list_pred.append((label, score))
return list_pred
def get_prediction(model_id):
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
def predict(review):
prediction = classifier(review)
print(prediction)
return parse_output(prediction)
return predict
with app:
gr.Markdown(
"""
# Compare Sentiment Analysis Models
Type text to predict sentiment.
""")
with gr.Row():
inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")
gr.Markdown(
"""
**Model Predictions**
""")
with gr.Row():
with gr.Column():
gr.Markdown(
"""
Model 1 = nlptown/bert-base-multilingual-uncased-sentiment
""")
btn1 = gr.Button("Predict - Model 1")
gr.Markdown(
"""
Model 2 = microsoft/deberta-xlarge-mnli
""")
btn2 = gr.Button("Predict - Model 2")
gr.Markdown(
"""
Model 3 = distilbert-base-uncased-finetuned-sst-2-english"
""")
btn3 = gr.Button("Predict - Model 3")
gr.Markdown(
"""
Model 4 = lordtt13/emo-mobilebert
""")
btn4 = gr.Button("Predict - Model 4")
gr.Markdown(
"""
Model 5 = juliensimon/reviews-sentiment-analysis
""")
btn5 = gr.Button("Predict - Model 5")
gr.Markdown(
"""
Model 6 = sbcBI/sentiment_analysis_model
""")
btn6 = gr.Button("Predict - Model 6")
with gr.Column():
out_1 = gr.Textbox(label="Predictions for Model 1")
out_2 = gr.Textbox(label="Predictions for Model 2")
out_3 = gr.Textbox(label="Predictions for Model 3")
out_4 = gr.Textbox(label="Predictions for Model 4")
out_5 = gr.Textbox(label="Predictions for Model 5")
out_6 = gr.Textbox(label="Predictions for Model 6")
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
btn3.click(fn=get_prediction(model_id_3), inputs=inp_1, outputs=out_3)
btn4.click(fn=get_prediction(model_id_4), inputs=inp_1, outputs=out_4)
btn5.click(fn=get_prediction(model_id_5), inputs=inp_1, outputs=out_5)
btn6.click(fn=get_prediction(model_id_6), inputs=inp_1, outputs=out_6)
app.launch() |