File size: 7,640 Bytes
9d6905f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6cac1
9d6905f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import os 
import sys
from pathlib import Path
from all_models import models
from externalmod import gr_Interface_load
from prompt_extend import extend_prompt
from random import randint
import asyncio
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

inference_timeout = 300
MAX_SEED = 2**32-1
current_model = models[0]
text_gen1 = extend_prompt
#text_gen1=gr.Interface.load("spaces/phenomenon1981/MagicPrompt-Stable-Diffusion") 
#text_gen1=gr.Interface.load("spaces/Yntec/prompt-extend") 
#text_gen1=gr.Interface.load("spaces/daspartho/prompt-extend") 
#text_gen1=gr.Interface.load("spaces/Omnibus/MagicPrompt-Stable-Diffusion_link")

models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models]

def text_it1(inputs, text_gen1=text_gen1):
        go_t1 = text_gen1(inputs)
        return(go_t1)

def set_model(current_model):
    current_model = models[current_model]
    return gr.update(label=(f"{current_model}"))

def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed): #negative_prompt,
        #proc1 = models2[model_choice]
        #output1 = proc1(inputs)
        output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed)
        #negative_prompt=negative_prompt
        return (output1)

# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    if height is not None and height >= 256: kwargs["height"] = height
    if width is not None and width >= 256: kwargs["width"] = width
    if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
    if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    noise = ""
    if seed >= 0: kwargs["seed"] = seed
    else:
        rand = randint(1, 500)
        for i in range(rand):
            noise += " "
    task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
                               prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {models2[model_index]}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fn(model_index, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_index, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {models2[model_index]}")
        result = None
    finally:
        loop.close()
    return result

css="""
#container { max-width: 1200px; margin: 0 auto; !important; }
.output { width=112px; height=112px; !important; }
.gallery { width=100%; min_height=768px; !important; }
.guide { text-align: center; !important; }
"""

with gr.Blocks(theme='Hev832/Applio', fill_width=True) as myface:
    
    with gr.Row():
        with gr.Column(scale=100):
            #Model selection dropdown    
            model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True)
    with gr.Row():
        with gr.Column(scale=100):
            with gr.Group():
                magic1 = gr.Textbox(label="Your Prompt", lines=4) #Positive
                with gr.Accordion("Advanced", open=False, visible=True):
                    neg_input = gr.Textbox(label='Negative prompt:', lines=1)
                    with gr.Row():
                        width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
        #with gr.Column(scale=100):
            #negative_prompt=gr.Textbox(label="Negative Prompt", lines=1)
            gr.HTML("""<style>           .gr-button {
            color: #ffffff !important;
            text-shadow: 1px 1px 0 rgba(0, 0, 0, 1) !important;
            background-image: linear-gradient(#76635a, #d2a489) !important;
            border-radius: 24px !important;
            border: solid 1px !important;
            border-top-color: #ffc99f !important;
            border-right-color: #000000 !important;
            border-bottom-color: #000000 !important;
            border-left-color: #ffc99f !important;
            padding: 6px 30px;
}
.gr-button:active {
            color: #ffc99f !important;
            font-size: 98% !important;
            text-shadow: 0px 0px 0 rgba(0, 0, 0, 1) !important;
            background-image: linear-gradient(#d2a489, #76635a) !important;
            border-top-color: #000000 !important;
            border-right-color: #ffffff !important;
            border-bottom-color: #ffffff !important;
            border-left-color: #000000 !important;
}
.gr-button:hover {
  filter: brightness(130%);
}
</style>""")
            run = gr.Button("Generate Image")
    with gr.Row():
        with gr.Column():
            output1 = gr.Image(label=(f"{current_model}"), show_download_button=True, elem_classes="output",
                               interactive=False, show_share_button=False, format=".png")
                
    with gr.Row():
        with gr.Column(scale=50):
            input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2)
            see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above")
            use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above")
    def short_prompt(inputs):
        return (inputs)
    
    model_name1.change(set_model, inputs=model_name1, outputs=[output1])
    
    #run.click(send_it1, inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed], outputs=[output1])
    
    gr.on(
        triggers=[run.click, magic1.submit],
        fn=send_it1,
        inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed],
        outputs=[output1],
    )

    use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
    
    see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
    
myface.queue(default_concurrency_limit=200, max_size=200)
myface.launch(show_api=False, max_threads=400)