#list of librarys for requirement.txt import os import re import hashlib from langchain.document_loaders import PyPDFLoader # Import embeddings module from langchain for vector representations of text from langchain.embeddings import HuggingFaceEmbeddings # Import text splitter for handling large texts from langchain.text_splitter import CharacterTextSplitter # Import vector store for database operations from langchain.vectorstores import Chroma # for loading of llama gguf model from langchain.llms import LlamaCpp from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE from langchain.chains.router import MultiPromptChain from langchain.chains import ConversationChain from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler CHROMADB_LOC = "/home/user/data/chromadb" def sanitize_collection_name(email): # Replace invalid characters with an underscore sanitized = re.sub(r'[^a-zA-Z0-9_-]', '_', email) # Ensure the name is within the length limits if len(sanitized) > 63: # Hashing the name to ensure uniqueness and length constraint hash_suffix = hashlib.sha256(email.encode()).hexdigest()[:8] sanitized = sanitized[:55] + "_" + hash_suffix # Ensure it starts and ends with an alphanumeric character if not re.match(r'^[a-zA-Z0-9].*[a-zA-Z0-9]$', sanitized): sanitized = "a" + sanitized + "1" return sanitized # Modify vectordb initialization to be dynamic based on user_id def get_vectordb_for_user(user_collection_name): vectordb = Chroma( collection_name=user_collection_name, embedding_function=HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2'), persist_directory=f"{CHROMADB_LOC}/{user_collection_name}", # Optional: Separate directory for each user's data ) return vectordb def pdf_to_vec(filename, user_collection_name): document = [] loader = PyPDFLoader(filename) document.extend(loader.load()) #which library is this from? # Initialize HuggingFaceEmbeddings with the 'sentence-transformers/all-MiniLM-L6-v2' model for generating text embeddings embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') # Initialize a CharacterTextSplitter to split the loaded documents into smaller chunks document_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100) # Use the splitter to divide the 'document' content into manageable chunks document_chunks = document_splitter.split_documents(document) #which library is this from? # Create a Chroma vector database from the document chunks with the specified embeddings, and set a directory for persistence vectordb = Chroma.from_documents(document_chunks, embedding=embeddings, collection_name=user_collection_name, persist_directory=CHROMADB_LOC) ## change to GUI path # Persist the created vector database to disk in the specified directory vectordb.persist() #this is mandatory? return(vectordb) #return collection # Return the collection as the asset class LlamaModelSingleton: _instance = None def __new__(cls): if cls._instance is None: print('Loading LLM model...') cls._instance = super(LlamaModelSingleton, cls).__new__(cls) # Model loading logic model_path = os.getenv("MODEL_PATH") cls._instance.llm = LlamaCpp( #streaming = True, model_path=model_path, #n_gpu_layers=-1, n_batch=512, temperature=0.1, top_p=1, #verbose=False, #callback_manager=callback_manager, max_tokens=2000, ) print(f'Model loaded from {model_path}') return cls._instance.llm def load_llm(): return LlamaModelSingleton() #step 5, to instantiate once to create default_chain,router_chain,destination_chains into chain and set vectordb. so will not re-create per prompt def default_chain(llm, user_collection_name): vectordb = get_vectordb_for_user(user_collection_name) # Use the dynamic vectordb based on user_id sum_template = """ As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students. our role entails: Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles. Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations. Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices. Objective: to summarize and explain the key points. Here the question: {input}""" mcq_template = """ As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students. our role entails: Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics. Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer. Objective: to create multiple choice question in this format [question: options A: options B: options C: options D: correct_answer: explanation:] Here the question: {input}""" prompt_infos = [ { "name": "SUMMARIZE", "description": "Good for summarizing and explaination ", "prompt_template": sum_template, }, { "name": "MCQ", "description": "Good for creating multiple choices questions", "prompt_template": mcq_template, }, ] destination_chains = {} for p_info in prompt_infos: name = p_info["name"] prompt_template = p_info["prompt_template"] prompt = PromptTemplate(template=prompt_template, input_variables=["input"]) chain = LLMChain(llm=llm, prompt=prompt) destination_chains[name] = chain #default_chain = ConversationChain(llm=llm, output_key="text") #memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) default_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectordb.as_retriever(search_kwargs={'k': 3}), verbose=True, output_key="text" ) destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos] destinations_str = "\n".join(destinations) router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) return default_chain,router_chain,destination_chains # Adjust llm_infer to accept user_id and use it for user-specific processing def llm_infer(user_collection_name, prompt): llm = load_llm() # load_llm is singleton for entire system vectordb = get_vectordb_for_user(user_collection_name) # Vector collection for each us. default_chain, router_chain, destination_chains = get_or_create_chain(user_collection_name, llm) # Now user-specific chain = MultiPromptChain( router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, #memory=ConversationBufferMemory(k=2), # memory_key='chat_history', return_messages=True verbose=True, ) response = chain.run(prompt) return response # Assuming a simplified caching mechanism for demonstration chain_cache = {} def get_or_create_chain(user_collection_name, llm): if 'default_chain' in chain_cache and 'router_chain' in chain_cache: default_chain = chain_cache['default_chain'] router_chain = chain_cache['router_chain'] destination_chains = chain_cache['destination_chains'] else: vectordb = get_vectordb_for_user(user_collection_name) # User-specific vector database sum_template = """ As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students. our role entails: Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles. Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations. Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices. Objective: to summarize and explain the key points. Here the question: {input}""" mcq_template = """ As a machine learning education specialist, our expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students. our role entails: Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics. Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer. Objective: to create multiple choice question in this format [question: options A: options B: options C: options D: correct_answer: explanation:] Here the question: {input}""" prompt_infos = [ { "name": "SUMMARIZE", "description": "Good for summarizing and explaination ", "prompt_template": sum_template, }, { "name": "MCQ", "description": "Good for creating multiple choices questions", "prompt_template": mcq_template, }, ] destination_chains = {} for p_info in prompt_infos: name = p_info["name"] prompt_template = p_info["prompt_template"] prompt = PromptTemplate(template=prompt_template, input_variables=["input"]) chain = LLMChain(llm=llm, prompt=prompt) destination_chains[name] = chain #default_chain = ConversationChain(llm=llm, output_key="text") #memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) default_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectordb.as_retriever(search_kwargs={'k': 3}), verbose=True, output_key="text" ) destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos] destinations_str = "\n".join(destinations) router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str) router_prompt = PromptTemplate( template=router_template, input_variables=["input"], output_parser=RouterOutputParser(), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) # chain_cache['default_chain'] = default_chain chain_cache['router_chain'] = router_chain chain_cache['destination_chains'] = destination_chains # Here we can adapt the chains if needed based on the user_id, for example, by adjusting the vectordb retriever # This is where user-specific adaptations occur return default_chain, router_chain, destination_chains