diff --git "a/ipynb/llm/Langchain_router_RAG.ipynb" "b/ipynb/llm/Langchain_router_RAG.ipynb" new file mode 100644--- /dev/null +++ "b/ipynb/llm/Langchain_router_RAG.ipynb" @@ -0,0 +1,5006 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "\n", + "loading the model into colab content/\n", + "---\n", + "\n" + ], + "metadata": { + "id": "ZtH1IyfvDP6M" + }, + "id": "ZtH1IyfvDP6M" + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b83d199f-4bd9-47bd-8be6-f9d0c802c570", + "metadata": { + "id": "b83d199f-4bd9-47bd-8be6-f9d0c802c570" + }, + "outputs": [], + "source": [ + "# URL from which you're downloading the model\n", + "#url = \"https://huggingface.co/ssoh/llama-2-7b-mcq_2-GGUF/resolve/main/llama-2-7b-mcq_2.Q5_K_M.gguf\" #new\n", + "url = \"https://huggingface.co/ssoh/llama-2-7b-mini-ibased-GGUF/resolve/main/llama-2-7b-mini-ibased.Q5_K_M.gguf\" #old" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ab25420c-aef0-48f2-a602-2fe89d6e64b3", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ab25420c-aef0-48f2-a602-2fe89d6e64b3", + "outputId": "91395c3f-078f-4e3d-9ee8-adc9175ac9ed" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2024-02-22 07:54:45-- https://huggingface.co/ssoh/llama-2-7b-mini-ibased-GGUF/resolve/main/llama-2-7b-mini-ibased.Q5_K_M.gguf\n", + "Resolving huggingface.co (huggingface.co)... 13.224.249.43, 13.224.249.10, 13.224.249.119, ...\n", + "Connecting to huggingface.co (huggingface.co)|13.224.249.43|:443... connected.\n", + "HTTP request sent, awaiting response... 307 Temporary Redirect\n", + "Location: /BitBasher/llama-2-7b-mini-ibased-GGUF/resolve/main/llama-2-7b-mini-ibased.Q5_K_M.gguf [following]\n", + "--2024-02-22 07:54:45-- https://huggingface.co/BitBasher/llama-2-7b-mini-ibased-GGUF/resolve/main/llama-2-7b-mini-ibased.Q5_K_M.gguf\n", + "Reusing existing connection to huggingface.co:443.\n", + "HTTP request sent, awaiting response... 302 Found\n", + "Location: https://cdn-lfs-us-1.huggingface.co/repos/a7/16/a716a6f7d3f2fa140d2f0263054d2bc120c1eca46172da4411fa02e97e0236bc/1fad558a8c0c265b3f1ef73559d401fdde00a1945e632c8c7523c066002aac4a?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27llama-2-7b-mini-ibased.Q5_K_M.gguf%3B+filename%3D%22llama-2-7b-mini-ibased.Q5_K_M.gguf%22%3B&Expires=1708847685&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwODg0NzY4NX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2E3LzE2L2E3MTZhNmY3ZDNmMmZhMTQwZDJmMDI2MzA1NGQyYmMxMjBjMWVjYTQ2MTcyZGE0NDExZmEwMmU5N2UwMjM2YmMvMWZhZDU1OGE4YzBjMjY1YjNmMWVmNzM1NTlkNDAxZmRkZTAwYTE5NDVlNjMyYzhjNzUyM2MwNjYwMDJhYWM0YT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=XwIDL78K38n3cjftylJtmNyj47tcB1jWzoBxOli3ZuGOoQCMfn7AW0kU8x3Ez%7EyytYSsRzI3h5ymQJQtXOM5CfBQ5xRP0EN3u%7E2ZPd8R-OeI-zVeExg6RouzZKwDP-yKSh9DHPvX8hal9mJ1GL376wvLhDFc2z13lvKYzywSj0BVgLa40I7CCbjzsAgSo9Ix5CGD8XjDkwEZEKOMHMLLudGuzakEhQFeBWa8AubPZ2jB%7ELp1A7FPgvvcZmXUIh4s9LCB2FSbsvVftoMNW5Q6hEQHzZ2ZYKHi5vOu4kSK8%7EFjU9cEe2fZYTdI0ABh-SxTnyBLYXEL%7EL00aZu5kAC7oA__&Key-Pair-Id=KCD77M1F0VK2B [following]\n", + "--2024-02-22 07:54:45-- https://cdn-lfs-us-1.huggingface.co/repos/a7/16/a716a6f7d3f2fa140d2f0263054d2bc120c1eca46172da4411fa02e97e0236bc/1fad558a8c0c265b3f1ef73559d401fdde00a1945e632c8c7523c066002aac4a?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27llama-2-7b-mini-ibased.Q5_K_M.gguf%3B+filename%3D%22llama-2-7b-mini-ibased.Q5_K_M.gguf%22%3B&Expires=1708847685&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwODg0NzY4NX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2E3LzE2L2E3MTZhNmY3ZDNmMmZhMTQwZDJmMDI2MzA1NGQyYmMxMjBjMWVjYTQ2MTcyZGE0NDExZmEwMmU5N2UwMjM2YmMvMWZhZDU1OGE4YzBjMjY1YjNmMWVmNzM1NTlkNDAxZmRkZTAwYTE5NDVlNjMyYzhjNzUyM2MwNjYwMDJhYWM0YT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSoifV19&Signature=XwIDL78K38n3cjftylJtmNyj47tcB1jWzoBxOli3ZuGOoQCMfn7AW0kU8x3Ez%7EyytYSsRzI3h5ymQJQtXOM5CfBQ5xRP0EN3u%7E2ZPd8R-OeI-zVeExg6RouzZKwDP-yKSh9DHPvX8hal9mJ1GL376wvLhDFc2z13lvKYzywSj0BVgLa40I7CCbjzsAgSo9Ix5CGD8XjDkwEZEKOMHMLLudGuzakEhQFeBWa8AubPZ2jB%7ELp1A7FPgvvcZmXUIh4s9LCB2FSbsvVftoMNW5Q6hEQHzZ2ZYKHi5vOu4kSK8%7EFjU9cEe2fZYTdI0ABh-SxTnyBLYXEL%7EL00aZu5kAC7oA__&Key-Pair-Id=KCD77M1F0VK2B\n", + "Resolving cdn-lfs-us-1.huggingface.co (cdn-lfs-us-1.huggingface.co)... 108.157.254.89, 108.157.254.63, 108.157.254.127, ...\n", + "Connecting to cdn-lfs-us-1.huggingface.co (cdn-lfs-us-1.huggingface.co)|108.157.254.89|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 4783157952 (4.5G) [binary/octet-stream]\n", + "Saving to: ‘llama-2-7b-mini-ibased.Q5_K_M.gguf’\n", + "\n", + "llama-2-7b-mini-iba 100%[===================>] 4.45G 156MB/s in 24s \n", + "\n", + "2024-02-22 07:55:10 (189 MB/s) - ‘llama-2-7b-mini-ibased.Q5_K_M.gguf’ saved [4783157952/4783157952]\n", + "\n" + ] + } + ], + "source": [ + "#step A, load the model into local folder\n", + "!wget {url}" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#Docker functions start from here\n", + "\n", + "---\n", + "\n" + ], + "metadata": { + "id": "IEc0kwKer7h2" + }, + "id": "IEc0kwKer7h2" + }, + { + "cell_type": "code", + "source": [ + "!pip -q install langchain llama-cpp-python pypdf chromadb sentence-transformers" + ], + "metadata": { + "id": "TNZi-ZG8sE7n", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "0df3c9bd-3747-4df7-f72e-fbecc579763a" + }, + "id": "TNZi-ZG8sE7n", + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m816.1/816.1 kB\u001b[0m \u001b[31m16.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.7/36.7 MB\u001b[0m \u001b[31m35.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m284.0/284.0 kB\u001b[0m \u001b[31m31.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m509.0/509.0 kB\u001b[0m \u001b[31m47.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.8/132.8 kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m74.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m242.1/242.1 kB\u001b[0m \u001b[31m29.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.0/61.0 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.5/45.5 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m82.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.1/92.1 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.8/60.8 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.2/41.2 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m98.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m94.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.9/57.9 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.6/105.6 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m698.9/698.9 kB\u001b[0m \u001b[31m46.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m80.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.4/49.4 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.5/71.5 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.8/50.8 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m94.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m82.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m14.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for llama-cpp-python (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#list of librarys for requirement.txt\n", + "from langchain.document_loaders import PyPDFLoader\n", + "\n", + "# Import embeddings module from langchain for vector representations of text\n", + "from langchain.embeddings import HuggingFaceEmbeddings\n", + "\n", + "# Import text splitter for handling large texts\n", + "from langchain.text_splitter import CharacterTextSplitter\n", + "\n", + "# Import vector store for database operations\n", + "from langchain.vectorstores import Chroma\n", + "\n", + "# for loading of llama gguf model\n", + "from langchain.llms import LlamaCpp\n", + "\n", + "from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser\n", + "from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE\n", + "\n", + "from langchain.memory import VectorStoreRetrieverMemory #new" + ], + "metadata": { + "id": "vmZabofLs7k8" + }, + "id": "vmZabofLs7k8", + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from langchain.chains.router import MultiPromptChain\n", + "from langchain.chains import ConversationChain\n", + "from langchain.chains.llm import LLMChain\n", + "from langchain.prompts import PromptTemplate\n", + "from langchain.memory import ConversationBufferMemory\n", + "from langchain.chains import ConversationalRetrievalChain\n", + "\n", + "from langchain.callbacks.manager import CallbackManager\n", + "from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler" + ], + "metadata": { + "id": "HzoRZHljSHal" + }, + "id": "HzoRZHljSHal", + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#Step 1, call this function once to instantiate it, this is to convert pdf into chromadb collection_name has no use for now\n", + "def pdf_to_vec(filename):\n", + " document = []\n", + " loader = PyPDFLoader(filename)\n", + " document.extend(loader.load()) #which library is this from?\n", + "\n", + " # Initialize HuggingFaceEmbeddings with the 'sentence-transformers/all-MiniLM-L6-v2' model for generating text embeddings\n", + " embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')\n", + "\n", + " # Initialize a CharacterTextSplitter to split the loaded documents into smaller chunks\n", + " document_splitter = CharacterTextSplitter(separator='\\n', chunk_size=500, chunk_overlap=100)\n", + "\n", + " # Use the splitter to divide the 'document' content into manageable chunks\n", + " document_chunks = document_splitter.split_documents(document) #which library is this from?\n", + "\n", + " # Create a Chroma vector database from the document chunks with the specified embeddings, and set a directory for persistence\n", + " vectordb = Chroma.from_documents(document_chunks, embedding=embeddings, persist_directory='./data') ## change to GUI path\n", + "\n", + " # Persist the created vector database to disk in the specified directory\n", + " vectordb.persist() #this is mandatory?\n", + "\n", + " return(vectordb)\n", + " #return collection # Return the collection as the asset" + ], + "metadata": { + "id": "5Cie9D5ms7r_" + }, + "id": "5Cie9D5ms7r_", + "execution_count": 6, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#step 2 upload the file and return vectordb for langchain\n", + "#https://drive.google.com/file/d/1tkX0lNFidzaoK4V1sm1qvkjWkcfZjDuc/view?usp=drive_link\n", + "\n", + "vectordb = pdf_to_vec(\"DEUSCHLE-SENIORTHESIS-2019.pdf\") #filepath to pdf in application" + ], + "metadata": { + "id": "Cctgk99HvVvu", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 528, + "referenced_widgets": [ + "56af2aa38eca4f46851274669bda9135", + "94df95412a7c421597354857d2a0eb89", + "a74b5a51e0304252af1202931d94c9e5", + "37273fb7709b4129a34ce84b9c95c4e1", + "d7c5e1bd48c645aba81fa10273625db5", + "75b729b465774abea5a5b22a1750cb59", + "0b9b7411cfc1460596b0575c132d9839", + "ddf4d8cea4a449a0ad55933ff339f8ca", + "7dc8d5de21c04e61b1d052d9ad181630", + "05fe3202124844c09402cce6a88ab458", + "aeeb6f00ec734cbba8bd977da14b4ae5", + "be173905c0c74f06822e23cb2333b47e", + "a966616bf49242bc90bc81a0a3e8a574", + "36be4079f9a34223b4a2f163cd4648e1", + "58b181ff77a740db8d6dec6776dba253", + "ecac8f98cc0c486b89ad2d38bba9d2c0", + "a93c8f40aa3f4868bc9f761a5ba5ebb7", + "3c1a70a28ec347e3b871edab324fa0ed", + "9993fd8a7f2b46108af26fda3f4ba803", + "ac29c69c700f4acfa9e367f0874679d5", + "addd679a903640fbaa1fb91b0b090870", + "9dadd7119a064210a0da9f48ecfd76fd", + "4c5772e5b04044e4a2bcf352aa8bdc5c", + "7869a6e1926442cfae4b0c044bbd95e5", + "e6e6540be1ad4ec695878d512c3ffdc2", + "e6cb17ffb1f94617b67d4dd72beb652c", + "e94357f0546149188ef35b023e637e3c", + "dbe55a3068a84b01a8fe0560bf76386c", + "b34e4f92a06d4164b91443cc347aec0c", + "1c5a5a092ca74d1ca38bb791eb54a0d0", + "ec9d7999e2e84f019182abe3e4b7c8db", + "bc7b8bf032374f2eb461bc6effe3cf43", + "4375cb8d3e3a46959ff7d57c78dc11a3", + "8ba7217b5ae64ece817a6cf910213aaf", + "c1d77de407d3487f90e565a17040d786", + "1076f1ea244d4d6397d2a1308ec1ef5a", + "b97aa0fb9ae842119fe55df2292cdaa5", + "687dd5bdc953477a8980c48dd6b50c6e", + "e4395f7bbcff4c0e82995d85578d066d", + "21d061dcaae54fdb955f3dc5159b383a", + "03e769503bea495d9d6c3b6371984438", + "ea6074f07cab4d9696236d7c26115283", + "1043ae5729774f178ac07b6714db0174", + "527c155fd38449829e8095e64dede1bd", + "c38b07391b9d439ba59892fb9a5007c1", + "d133ce95579748a581c15e941b42fdf3", + "a63c0c7ebbf04eb6be25aa79a03b72b2", + "0c6805b9a106460e88caf4f6e854174c", + "7e19408459a24cbdb3f0f34673df8fc5", + "fa0fcb6af61840d3a7ae3ae0c7398413", + "31f97d1415cf47f8ac4d6ae5161b26d6", + "916d4bb9e51a4a559e8e306cc731bf02", + "385e146658714ade958348cd00bd983d", + "a1298b595ade4b57bdbe1d691a57a005", + "32ded7f870b543ef949ccc8298b6366b", + "60971c54dd3745de9b030ed1c68ec347", + "31d477e7bbf64d5da099a2ddc220b041", + "00061d9e9e974da59498e335243bbeb6", + "47b7c8cef74948b38e7e680b7ee2b5ba", + "5e1d72dd82894042a30bc7f553b2f3c9", + "3e6a018670104950bbd81db36004ae7b", + "14c0c114e39a44659dd436247f4e2ea6", + "905ecc24d2e243ada92a0530089e7750", + "1febee6256bf435384c4cfc0e084e600", + "b37d3fb184b24f8190f7432c14bc76f9", + "8d86a85fe5924ad39a416adf7b803974", + "d502cd41b71f4a1c8d031025c4991e2a", + "eab09fc7c565478dafe0c29aa6258f4b", + "3bc8fbd9c32a4b7a908cadcd353d4f46", + "0cebd09286804072b4426759f7e364b6", + "bace080952e942fa9cea706e25d5c7fa", + "ebe6d3ee30944d5d8369e752aae39783", + "88856523500645e89f633eff2b72c8f8", + "adc2f01d3c364253b8619bfdbf49ec76", + "e926b56418204199b32b548d07798ac0", + "2dd023eecfa04ea5b168c4a216c1f375", + "90440b84a782492ca4b4b36efa88c8ff", + "e913f40cd9d644d3a5163ff688d22c9c", + "4f95597d0d444b05b77ce310568afba2", + "91766aff8df64774a0ebecee48301667", + "8260b76988be49d185c62326bcbdc0f7", + "b7690f09eeaa4347ba9e9197dc4743d4", + "6cbf652b9e7740dd8f196ee62bb0d0ee", + "198fc260e8ae45348710aac8d27c611a", + "4af645a282eb4264a23283b3e8f33f22", + "8aa6b00a371f48e69356e192cf8d247d", + "9cd0ce4bfd2e405b83d68325c3985d8e", + "f3b4db4e62bb42a5a34440ae32be470d", + "026c4ead28964a51a1de48ce1e7e2f3d", + "d20dc23698db40f5bbeb5981b69ada25", + "573a0464226c418fb8607fdb320a6d84", + "d4473109afa6407e9f58d73c8ce6e715", + "84d3b2e43ec543309ef44f62a4a0e2f6", + "f3bd31b4d32446ef913a704a37584429", + "45f9ea1d9ada4f3989e534575c130814", + "d5a4e7b297914911a335c43ab0229966", + "29594fbb2d924379936ad571e79739b9", + "27b8be4bc6614ed5b1b5fa9e818f879e", + "a9ddeaa7d9f14c8c98cd6c093bd58dd1", + "8b59e3b750b84837a5adc95b948210a9", + "2b818f8f715f4b1e8172e9e7f6ad68c6", + "18750f0ae1c045b4b599597bb64a3633", + "b2b86743bcf145069cec3310df056abb", + "81559a92eabe49b3b6ef508fff7695a4", + "967fac20d88340c1bc0d05f751e550ed", + "4fb73911ae464a3b840c5d5fe830459a", + "ccdc53ba51554509afa78e19240baf5a", + "25eb57496e4e4f4ebc491f1e10bd4626", + "34f54e0f181248e5911eda0b81cb003d", + "e225e7f9a65d46cdb8c255c150ef61fb", + "bb6d95c0f7b24ef9b7afc08c565ddd6e", + "b0c1b6dd77b844f0b92a0695db8868b9", + "1a68194ed30f4fa99c934f36fc6ee9a4", + "c410794eb26841febc337c28f80b6ccc", + "f1a781cd7a46445c8925f515c9b6e3a8", + "2711401df356414e88734d0d4c249c99", + "331f83f1c42f4d7eb3c7094d01e80cdb", + "ae64ab81e223431fa90ef46bbeb56832", + "a1522e4b604544009627e70f66bc13af", + "6aaaa994839b43a2ba5f62babb18c88c", + "612f2baa2e0f4956a96f4ee96440b281" + ] + }, + "outputId": "ee07c185-cfc1-479b-90c5-5d5a8d74134a" + }, + "id": "Cctgk99HvVvu", + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "modules.json: 0%| | 0.00/349 [00:00\", \"\", \"\", \"<0x00>\", \"<...\n", + "llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...\n", + "llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...\n", + "llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1\n", + "llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2\n", + "llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0\n", + "llama_model_loader: - kv 19: tokenizer.ggml.padding_token_id u32 = 2\n", + "llama_model_loader: - kv 20: tokenizer.ggml.add_bos_token bool = true\n", + "llama_model_loader: - kv 21: tokenizer.ggml.add_eos_token bool = false\n", + "llama_model_loader: - kv 22: tokenizer.chat_template str = {% if messages[0]['role'] == 'system'...\n", + "llama_model_loader: - kv 23: general.quantization_version u32 = 2\n", + "llama_model_loader: - type f32: 65 tensors\n", + "llama_model_loader: - type q5_K: 193 tensors\n", + "llama_model_loader: - type q6_K: 33 tensors\n", + "llm_load_vocab: special tokens definition check successful ( 259/32000 ).\n", + "llm_load_print_meta: format = GGUF V3 (latest)\n", + "llm_load_print_meta: arch = llama\n", + "llm_load_print_meta: vocab type = SPM\n", + "llm_load_print_meta: n_vocab = 32000\n", + "llm_load_print_meta: n_merges = 0\n", + "llm_load_print_meta: n_ctx_train = 4096\n", + "llm_load_print_meta: n_embd = 4096\n", + "llm_load_print_meta: n_head = 32\n", + "llm_load_print_meta: n_head_kv = 32\n", + "llm_load_print_meta: n_layer = 32\n", + "llm_load_print_meta: n_rot = 128\n", + "llm_load_print_meta: n_embd_head_k = 128\n", + "llm_load_print_meta: n_embd_head_v = 128\n", + "llm_load_print_meta: n_gqa = 1\n", + "llm_load_print_meta: n_embd_k_gqa = 4096\n", + "llm_load_print_meta: n_embd_v_gqa = 4096\n", + "llm_load_print_meta: f_norm_eps = 0.0e+00\n", + "llm_load_print_meta: f_norm_rms_eps = 1.0e-05\n", + "llm_load_print_meta: f_clamp_kqv = 0.0e+00\n", + "llm_load_print_meta: f_max_alibi_bias = 0.0e+00\n", + "llm_load_print_meta: n_ff = 11008\n", + "llm_load_print_meta: n_expert = 0\n", + "llm_load_print_meta: n_expert_used = 0\n", + "llm_load_print_meta: rope scaling = linear\n", + "llm_load_print_meta: freq_base_train = 10000.0\n", + "llm_load_print_meta: freq_scale_train = 1\n", + "llm_load_print_meta: n_yarn_orig_ctx = 4096\n", + "llm_load_print_meta: rope_finetuned = unknown\n", + "llm_load_print_meta: model type = 7B\n", + "llm_load_print_meta: model ftype = Q5_K - Medium\n", + "llm_load_print_meta: model params = 6.74 B\n", + "llm_load_print_meta: model size = 4.45 GiB (5.68 BPW) \n", + "llm_load_print_meta: general.name = LLaMA v2\n", + "llm_load_print_meta: BOS token = 1 ''\n", + "llm_load_print_meta: EOS token = 2 ''\n", + "llm_load_print_meta: UNK token = 0 ''\n", + "llm_load_print_meta: PAD token = 2 ''\n", + "llm_load_print_meta: LF token = 13 '<0x0A>'\n", + "llm_load_tensors: ggml ctx size = 0.11 MiB\n", + "llm_load_tensors: CPU buffer size = 4560.87 MiB\n", + "..................................................................................................\n", + "llama_new_context_with_model: n_ctx = 512\n", + "llama_new_context_with_model: freq_base = 10000.0\n", + "llama_new_context_with_model: freq_scale = 1\n", + "llama_kv_cache_init: CPU KV buffer size = 256.00 MiB\n", + "llama_new_context_with_model: KV self size = 256.00 MiB, K (f16): 128.00 MiB, V (f16): 128.00 MiB\n", + "llama_new_context_with_model: CPU input buffer size = 10.01 MiB\n", + "llama_new_context_with_model: CPU compute buffer size = 70.50 MiB\n", + "llama_new_context_with_model: graph splits (measure): 1\n", + "AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | \n", + "Model metadata: {'tokenizer.chat_template': \"{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\\\n' + system_message + '\\\\n<>\\\\n\\\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}\", 'tokenizer.ggml.add_eos_token': 'false', 'tokenizer.ggml.padding_token_id': '2', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.eos_token_id': '2', 'general.architecture': 'llama', 'llama.rope.freq_base': '10000.000000', 'llama.context_length': '4096', 'general.name': 'LLaMA v2', 'tokenizer.ggml.add_bos_token': 'true', 'llama.embedding_length': '4096', 'llama.feed_forward_length': '11008', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.dimension_count': '128', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'llama.block_count': '32', 'llama.attention.head_count_kv': '32', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'llama', 'general.file_type': '17'}\n", + "Using chat template: {% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}\n", + "Using chat eos_token: \n", + "Using chat bos_token: \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "https://github.com/langchain-ai/langchain/issues/5163" + ], + "metadata": { + "id": "-fKKCWiVp6cH" + }, + "id": "-fKKCWiVp6cH" + }, + { + "cell_type": "code", + "source": [ + "#attempt to resolve MULTI_PROMPT_ROUTER_TEMPLATE class as, LLM output for router chain is not predictable. the class is expecting a standardized json output which LLM may not produce 100% of the time\n", + "import json\n", + "import langchain\n", + "from typing import Any, Dict, List, Optional, Type, cast\n", + "\n", + "class RouterOutputParser_simple(langchain.schema.BaseOutputParser[Dict[str, str]]):\n", + " \"\"\"Parser for output of router chain int he multi-prompt chain.\"\"\"\n", + "\n", + " default_destination: str = \"DEFAULT\"\n", + " next_inputs_type: Type = str\n", + " next_inputs_inner_key: str = \"input\"\n", + "\n", + " def parse(self, text: str) -> Dict[str, Any]:\n", + " try:\n", + " expected_keys = [\"destination\", \"next_inputs\"]\n", + " parsed = json.loads(text) ### this line is changed\n", + " if not isinstance(parsed[\"destination\"], str):\n", + " raise ValueError(\"Expected 'destination' to be a string.\")\n", + " if not isinstance(parsed[\"next_inputs\"], self.next_inputs_type):\n", + " raise ValueError(\n", + " f\"Expected 'next_inputs' to be {self.next_inputs_type}.\"\n", + " )\n", + " parsed[\"next_inputs\"] = {self.next_inputs_inner_key: parsed[\"next_inputs\"]}\n", + " if (\n", + " parsed[\"destination\"].strip().lower()\n", + " == self.default_destination.lower()\n", + " ):\n", + " parsed[\"destination\"] = None\n", + " else:\n", + " parsed[\"destination\"] = parsed[\"destination\"].strip()\n", + " return parsed\n", + " except Exception as e:\n", + "\n", + " f\"Parsing text\\n{text}\\n raised following error:\\n{e}\"\n" + ], + "metadata": { + "id": "aeJtZQJApKA8" + }, + "id": "aeJtZQJApKA8", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#step 5, to instantiate once to create default_chain,router_chain,destination_chains into chain and set vectordb. so will not re-create per prompt\n", + "def default_chain():\n", + "\n", + " sum_template = \"\"\"\n", + " As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.\n", + "\n", + " Your role entails:\n", + "\n", + " Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.\n", + " Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.\n", + " Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.\n", + "\n", + " Objective: to summarize and explain the key points.\n", + " summary:\n", + "\n", + " Here the question:\n", + " {input}\n", + " \"\"\"\n", + "\n", + " mcq_template = \"\"\"\n", + " As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.\n", + "\n", + " Your role entails:\n", + " Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.\n", + " Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.\n", + "\n", + " Objective: to create multiple choice question in this format\n", + " question:\n", + " options A:\n", + " options B:\n", + " options C:\n", + " options D:\n", + " correct_answer:\n", + " explanation:\n", + "\n", + " Here the question:\n", + " {input}\n", + " \"\"\"\n", + "\n", + " prompt_infos = [\n", + " {\n", + " \"name\": \"SUMMARIZE\",\n", + " \"description\": \"Good for summarizing and explaination\",\n", + " \"prompt_template\": sum_template,\n", + " },\n", + " {\n", + " \"name\": \"MCQ\",\n", + " \"description\": \"Good for creating multiple choices questions mcq\",\n", + " \"prompt_template\": mcq_template,\n", + " },\n", + " ]\n", + "\n", + " destination_chains = {}\n", + "\n", + " for p_info in prompt_infos:\n", + " name = p_info[\"name\"]\n", + " prompt_template = p_info[\"prompt_template\"]\n", + " prompt = PromptTemplate(template=prompt_template, input_variables=[\"input\"])\n", + " embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')\n", + " vectordb= Chroma(persist_directory = './data', embedding_function = embeddings)\n", + " retriever = vectordb.as_retriever()\n", + " memory = VectorStoreRetrieverMemory(retriever=retriever)\n", + "\n", + " chain = LLMChain(llm=llm, prompt=prompt, verbose=True, memory=memory)\n", + " destination_chains[name] = chain\n", + "\n", + " default_chain = ConversationalRetrievalChain.from_llm(llm=llm,\n", + " retriever=vectordb.as_retriever(search_kwargs={'k': 3}),\n", + " verbose=True, output_key=\"text\" )\n", + "\n", + " destinations = [f\"{p['name']}: {p['description']}\" for p in prompt_infos]\n", + " destinations_str = \"\\n\".join(destinations)\n", + " print(destinations_str)\n", + " router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)\n", + " router_prompt = PromptTemplate(\n", + " template=router_template,\n", + " input_variables=[\"input\"],\n", + " output_parser=RouterOutputParser(),\n", + " )\n", + " router_chain = LLMRouterChain.from_llm(llm, router_prompt)\n", + " print(\"destination_chains:\",destination_chains)\n", + " return default_chain,router_chain,destination_chains" + ], + "metadata": { + "id": "6kRG03GLMR4X" + }, + "id": "6kRG03GLMR4X", + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#step 6, to instantiate once to create default_chain,router_chain,destination_chains into chain and set vectordb. so will not re-create per prompt\n", + "\n", + "default_chain,router_chain,destination_chains = default_chain()" + ], + "metadata": { + "id": "4OU9i10eMlOE", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "b36ed5e3-af3e-481a-9523-29e0918ed005" + }, + "id": "4OU9i10eMlOE", + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "SUMMARIZE: Good for summarizing and explaination\n", + "MCQ: Good for creating multiple choices questions mcq\n", + "destination_chains: {'SUMMARIZE': LLMChain(memory=VectorStoreRetrieverMemory(retriever=VectorStoreRetriever(tags=['Chroma', 'HuggingFaceEmbeddings'], vectorstore=)), verbose=True, prompt=PromptTemplate(input_variables=['input'], template='\\n As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.\\n\\n Your role entails:\\n\\n Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.\\n Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.\\n Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.\\n\\n Objective: to summarize and explain the key points.\\n summary:\\n\\n Here the question:\\n {input}\\n '), llm=LlamaCpp(client=, model_path='/content/llama-2-7b-mini-ibased.Q5_K_M.gguf', n_batch=512, n_gpu_layers=-1, max_tokens=2000, temperature=0.1, top_p=1.0)), 'MCQ': LLMChain(memory=VectorStoreRetrieverMemory(retriever=VectorStoreRetriever(tags=['Chroma', 'HuggingFaceEmbeddings'], vectorstore=)), verbose=True, prompt=PromptTemplate(input_variables=['input'], template='\\n As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.\\n\\n Your role entails:\\n Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.\\n Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.\\n\\n Objective: to create multiple choice question in this format\\n question:\\n options A:\\n options B:\\n options C:\\n options D:\\n correct_answer:\\n explanation:\\n\\n Here the question:\\n {input}\\n '), llm=LlamaCpp(client=, model_path='/content/llama-2-7b-mini-ibased.Q5_K_M.gguf', n_batch=512, n_gpu_layers=-1, max_tokens=2000, temperature=0.1, top_p=1.0))}\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#step 7 ,instantiate the function once\n", + "def llm_infer(default_chain,router_chain,destination_chains,prompt):\n", + "\n", + " chain = MultiPromptChain(\n", + " router_chain=router_chain,\n", + " destination_chains=destination_chains,\n", + " default_chain=default_chain,\n", + " #memory=ConversationBufferMemory(k=2), # memory_key='chat_history', return_messages=True\n", + " verbose=True,\n", + " )\n", + " print(prompt)\n", + " response = chain.run(prompt)\n", + "\n", + " return response" + ], + "metadata": { + "id": "NdlZrvPjLcGf" + }, + "id": "NdlZrvPjLcGf", + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#step 8a call function using this. replace the prompt string with GUI captured prompt\n", + "result= llm_infer(default_chain,router_chain,destination_chains,\"please give me a mcq on Hidden Markov Models\") #input GUI variable" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hG7NJtBiOSdd", + "outputId": "d4fb9ff1-2b63-402e-afdf-c83424484f41" + }, + "id": "hG7NJtBiOSdd", + "execution_count": 18, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "please give me a mcq on Hidden Markov Models\n", + "\n", + "\n", + "\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/langchain/chains/llm.py:316: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n", + " warnings.warn(\n", + "Llama.generate: prefix-match hit\n", + "\n", + "llama_print_timings: load time = 170049.91 ms\n", + "llama_print_timings: sample time = 114.06 ms / 208 runs ( 0.55 ms per token, 1823.52 tokens per second)\n", + "llama_print_timings: prompt eval time = 163286.83 ms / 303 tokens ( 538.90 ms per token, 1.86 tokens per second)\n", + "llama_print_timings: eval time = 147224.43 ms / 207 runs ( 711.23 ms per token, 1.41 tokens per second)\n", + "llama_print_timings: total time = 311391.08 ms / 510 tokens\n", + "Llama.generate: prefix-match hit\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "MCQ: {'input': 'please give me a mcq on Hidden Markov Models'}\n", + "\n", + "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", + "Prompt after formatting:\n", + "\u001b[32;1m\u001b[1;3m\n", + " As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.\n", + "\n", + " Your role entails:\n", + " Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.\n", + " Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.\n", + "\n", + " Objective: to create multiple choice question in this format\n", + " question:\n", + " options A:\n", + " options B:\n", + " options C:\n", + " options D:\n", + " correct_answer:\n", + " explanation:\n", + "\n", + " Here the question:\n", + " please give me a mcq on Hidden Markov Models\n", + " \u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "llama_print_timings: load time = 170049.91 ms\n", + "llama_print_timings: sample time = 98.14 ms / 159 runs ( 0.62 ms per token, 1620.12 tokens per second)\n", + "llama_print_timings: prompt eval time = 100196.94 ms / 189 tokens ( 530.14 ms per token, 1.89 tokens per second)\n", + "llama_print_timings: eval time = 109954.49 ms / 158 runs ( 695.91 ms per token, 1.44 tokens per second)\n", + "llama_print_timings: total time = 210829.40 ms / 347 tokens\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n", + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#for docker to return to GUI\n", + "print(result)" + ], + "metadata": { + "id": "85F0SR9NV7sf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a601dde1-5af6-42f1-b2ab-b4862b5cfa99" + }, + "id": "85F0SR9NV7sf", + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Response:\n", + "\n", + " question:\n", + " What is the primary difference between a Hidden Markov Model (HMM) and a conventional Markov Model?\n", + "\n", + " options A: HMM has more states than a conventional Markov Model\n", + "\n", + " options B: HMM has more transitions than a conventional Markov Model\n", + "\n", + " options C: HMM has more outputs than a conventional Markov Model\n", + "\n", + " options D: HMM has more inputs than a conventional Markov Model\n", + "\n", + " correct_answer: B\n", + "\n", + " explanation:\n", + "\n", + " A HMM has more transitions than a conventional Markov Model because an HMM can have multiple states simultaneously, whereas a conventional Markov Model can only be in one state at a time.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#step 8b call function using this. replace the prompt string with GUI captured prompt\n", + "result= llm_infer(default_chain,router_chain,destination_chains,\"please give me a summary Hidden Markov Models\") #input GUI variable" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "01yuooVm27Gs", + "outputId": "b04a9f78-1ffc-41aa-c52e-8ac2bc81d8b8" + }, + "id": "01yuooVm27Gs", + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "please give me a summary Hidden Markov Models\n", + "\n", + "\n", + "\u001b[1m> Entering new MultiPromptChain chain...\u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/langchain/chains/llm.py:316: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n", + " warnings.warn(\n", + "Llama.generate: prefix-match hit\n", + "\n", + "llama_print_timings: load time = 170049.91 ms\n", + "llama_print_timings: sample time = 108.70 ms / 191 runs ( 0.57 ms per token, 1757.08 tokens per second)\n", + "llama_print_timings: prompt eval time = 159612.33 ms / 300 tokens ( 532.04 ms per token, 1.88 tokens per second)\n", + "llama_print_timings: eval time = 137167.79 ms / 190 runs ( 721.94 ms per token, 1.39 tokens per second)\n", + "llama_print_timings: total time = 297613.67 ms / 490 tokens\n", + "Llama.generate: prefix-match hit\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "SUMMARIZE: {'input': 'please give me a summary Hidden Markov Models'}\n", + "\n", + "\u001b[1m> Entering new LLMChain chain...\u001b[0m\n", + "Prompt after formatting:\n", + "\u001b[32;1m\u001b[1;3m\n", + " As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.\n", + "\n", + " Your role entails:\n", + "\n", + " Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.\n", + " Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.\n", + " Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.\n", + "\n", + " Objective: to summarize and explain the key points.\n", + " summary:\n", + "\n", + " Here the question:\n", + " please give me a summary Hidden Markov Models\n", + " \u001b[0m\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "llama_print_timings: load time = 170049.91 ms\n", + "llama_print_timings: sample time = 199.50 ms / 328 runs ( 0.61 ms per token, 1644.09 tokens per second)\n", + "llama_print_timings: prompt eval time = 96984.80 ms / 183 tokens ( 529.97 ms per token, 1.89 tokens per second)\n", + "llama_print_timings: eval time = 230166.40 ms / 327 runs ( 703.87 ms per token, 1.42 tokens per second)\n", + "llama_print_timings: total time = 328617.54 ms / 510 tokens\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n", + "\n", + "\u001b[1m> Finished chain.\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#for docker to return to GUI\n", + "print(result)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Tv5Mh0EF3Afx", + "outputId": "3b09eb81-ee0b-4d24-e8f4-5863e1f20b95" + }, + "id": "Tv5Mh0EF3Afx", + "execution_count": 21, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + " Response:\n", + "\n", + " Hidden Markov Models (HMMs) are a type of probabilistic model that can be used to represent and analyze sequential data. In an HMM, the underlying system is modeled as a Markov process with unobservable (or hidden) states that generate observable outcomes or observations. The basic idea is that the observations are generated by the underlying states, and the goal is to infer the most likely state sequence that generated the observations.\n", + "\n", + "HMMs have numerous applications in natural language processing, speech recognition, bioinformatics, and other fields where sequential data is prevalent. They can be used for tasks such as speech recognition, natural language processing, and bioinformatics.\n", + "\n", + "The key components of an HMM include:\n", + "\n", + "1. Observation sequence: A sequence of observations generated by the underlying states\n", + "2. State sequence: A sequence of hidden states that generate the observations\n", + "3. Transition matrix: A matrix that specifies the probability of transitioning from one state to another\n", + "4. Emission matrix: A matrix that specifies the probability of observing each symbol given each state\n", + "5. Initial state distribution: A probability distribution over the initial states\n", + "6. Final state distribution: A probability distribution over the final states\n", + "\n", + "The basic steps involved in using HMMs are:\n", + "\n", + "1. Modeling the data: This involves defining the HMM architecture, including the number of states, the observation sequence, and the transition and emission matrices\n", + "2. Estimating the model parameters: This involves estim\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#END for docker app\n", + "\n", + "---\n", + "\n" + ], + "metadata": { + "id": "c7MYr-BdZCWr" + }, + "id": "c7MYr-BdZCWr" + }, + { + "cell_type": "code", + "source": [ + "print(chain.run(\"please give me a mcq on Hidden Markov Models with answer and explaination\")) #with old gguf\n" + ], + "metadata": { + "id": "pfxAx9Qk2WEK" + }, + "id": "pfxAx9Qk2WEK", + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + }, + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "56af2aa38eca4f46851274669bda9135": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94df95412a7c421597354857d2a0eb89", + "IPY_MODEL_a74b5a51e0304252af1202931d94c9e5", + "IPY_MODEL_37273fb7709b4129a34ce84b9c95c4e1" + ], + "layout": "IPY_MODEL_d7c5e1bd48c645aba81fa10273625db5" + } + }, + "94df95412a7c421597354857d2a0eb89": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_75b729b465774abea5a5b22a1750cb59", + "placeholder": "​", + "style": "IPY_MODEL_0b9b7411cfc1460596b0575c132d9839", + "value": "modules.json: 100%" + } + }, + "a74b5a51e0304252af1202931d94c9e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ddf4d8cea4a449a0ad55933ff339f8ca", + "max": 349, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7dc8d5de21c04e61b1d052d9ad181630", + "value": 349 + } + }, + "37273fb7709b4129a34ce84b9c95c4e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_05fe3202124844c09402cce6a88ab458", + "placeholder": "​", + "style": "IPY_MODEL_aeeb6f00ec734cbba8bd977da14b4ae5", + "value": " 349/349 [00:00<00:00, 12.8kB/s]" + } + }, + "d7c5e1bd48c645aba81fa10273625db5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "75b729b465774abea5a5b22a1750cb59": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b9b7411cfc1460596b0575c132d9839": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ddf4d8cea4a449a0ad55933ff339f8ca": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7dc8d5de21c04e61b1d052d9ad181630": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "05fe3202124844c09402cce6a88ab458": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aeeb6f00ec734cbba8bd977da14b4ae5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "be173905c0c74f06822e23cb2333b47e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a966616bf49242bc90bc81a0a3e8a574", + "IPY_MODEL_36be4079f9a34223b4a2f163cd4648e1", + "IPY_MODEL_58b181ff77a740db8d6dec6776dba253" + ], + "layout": "IPY_MODEL_ecac8f98cc0c486b89ad2d38bba9d2c0" + } + }, + "a966616bf49242bc90bc81a0a3e8a574": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a93c8f40aa3f4868bc9f761a5ba5ebb7", + "placeholder": "​", + "style": "IPY_MODEL_3c1a70a28ec347e3b871edab324fa0ed", + "value": "config_sentence_transformers.json: 100%" + } + }, + "36be4079f9a34223b4a2f163cd4648e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9993fd8a7f2b46108af26fda3f4ba803", + "max": 116, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ac29c69c700f4acfa9e367f0874679d5", + "value": 116 + } + }, + "58b181ff77a740db8d6dec6776dba253": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_addd679a903640fbaa1fb91b0b090870", + "placeholder": "​", + "style": "IPY_MODEL_9dadd7119a064210a0da9f48ecfd76fd", + "value": " 116/116 [00:00<00:00, 4.13kB/s]" + } + }, + "ecac8f98cc0c486b89ad2d38bba9d2c0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a93c8f40aa3f4868bc9f761a5ba5ebb7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3c1a70a28ec347e3b871edab324fa0ed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9993fd8a7f2b46108af26fda3f4ba803": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ac29c69c700f4acfa9e367f0874679d5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "addd679a903640fbaa1fb91b0b090870": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9dadd7119a064210a0da9f48ecfd76fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4c5772e5b04044e4a2bcf352aa8bdc5c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7869a6e1926442cfae4b0c044bbd95e5", + "IPY_MODEL_e6e6540be1ad4ec695878d512c3ffdc2", + "IPY_MODEL_e6cb17ffb1f94617b67d4dd72beb652c" + ], + "layout": "IPY_MODEL_e94357f0546149188ef35b023e637e3c" + } + }, + "7869a6e1926442cfae4b0c044bbd95e5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dbe55a3068a84b01a8fe0560bf76386c", + "placeholder": "​", + "style": "IPY_MODEL_b34e4f92a06d4164b91443cc347aec0c", + "value": "README.md: 100%" + } + }, + "e6e6540be1ad4ec695878d512c3ffdc2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c5a5a092ca74d1ca38bb791eb54a0d0", + "max": 10659, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ec9d7999e2e84f019182abe3e4b7c8db", + "value": 10659 + } + }, + "e6cb17ffb1f94617b67d4dd72beb652c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc7b8bf032374f2eb461bc6effe3cf43", + "placeholder": "​", + "style": "IPY_MODEL_4375cb8d3e3a46959ff7d57c78dc11a3", + "value": " 10.7k/10.7k [00:00<00:00, 543kB/s]" + } + }, + "e94357f0546149188ef35b023e637e3c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbe55a3068a84b01a8fe0560bf76386c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b34e4f92a06d4164b91443cc347aec0c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c5a5a092ca74d1ca38bb791eb54a0d0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ec9d7999e2e84f019182abe3e4b7c8db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bc7b8bf032374f2eb461bc6effe3cf43": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4375cb8d3e3a46959ff7d57c78dc11a3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ba7217b5ae64ece817a6cf910213aaf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c1d77de407d3487f90e565a17040d786", + "IPY_MODEL_1076f1ea244d4d6397d2a1308ec1ef5a", + "IPY_MODEL_b97aa0fb9ae842119fe55df2292cdaa5" + ], + "layout": "IPY_MODEL_687dd5bdc953477a8980c48dd6b50c6e" + } + }, + "c1d77de407d3487f90e565a17040d786": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e4395f7bbcff4c0e82995d85578d066d", + "placeholder": "​", + "style": "IPY_MODEL_21d061dcaae54fdb955f3dc5159b383a", + "value": "sentence_bert_config.json: 100%" + } + }, + "1076f1ea244d4d6397d2a1308ec1ef5a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_03e769503bea495d9d6c3b6371984438", + "max": 53, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ea6074f07cab4d9696236d7c26115283", + "value": 53 + } + }, + "b97aa0fb9ae842119fe55df2292cdaa5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1043ae5729774f178ac07b6714db0174", + "placeholder": "​", + "style": "IPY_MODEL_527c155fd38449829e8095e64dede1bd", + "value": " 53.0/53.0 [00:00<00:00, 3.37kB/s]" + } + }, + "687dd5bdc953477a8980c48dd6b50c6e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4395f7bbcff4c0e82995d85578d066d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21d061dcaae54fdb955f3dc5159b383a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "03e769503bea495d9d6c3b6371984438": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ea6074f07cab4d9696236d7c26115283": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1043ae5729774f178ac07b6714db0174": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "527c155fd38449829e8095e64dede1bd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c38b07391b9d439ba59892fb9a5007c1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d133ce95579748a581c15e941b42fdf3", + "IPY_MODEL_a63c0c7ebbf04eb6be25aa79a03b72b2", + "IPY_MODEL_0c6805b9a106460e88caf4f6e854174c" + ], + "layout": "IPY_MODEL_7e19408459a24cbdb3f0f34673df8fc5" + } + }, + "d133ce95579748a581c15e941b42fdf3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fa0fcb6af61840d3a7ae3ae0c7398413", + "placeholder": "​", + "style": "IPY_MODEL_31f97d1415cf47f8ac4d6ae5161b26d6", + "value": "config.json: 100%" + } + }, + "a63c0c7ebbf04eb6be25aa79a03b72b2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_916d4bb9e51a4a559e8e306cc731bf02", + "max": 612, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_385e146658714ade958348cd00bd983d", + "value": 612 + } + }, + "0c6805b9a106460e88caf4f6e854174c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a1298b595ade4b57bdbe1d691a57a005", + "placeholder": "​", + "style": "IPY_MODEL_32ded7f870b543ef949ccc8298b6366b", + "value": " 612/612 [00:00<00:00, 42.1kB/s]" + } + }, + "7e19408459a24cbdb3f0f34673df8fc5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa0fcb6af61840d3a7ae3ae0c7398413": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31f97d1415cf47f8ac4d6ae5161b26d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "916d4bb9e51a4a559e8e306cc731bf02": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "385e146658714ade958348cd00bd983d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a1298b595ade4b57bdbe1d691a57a005": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "32ded7f870b543ef949ccc8298b6366b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "60971c54dd3745de9b030ed1c68ec347": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31d477e7bbf64d5da099a2ddc220b041", + "IPY_MODEL_00061d9e9e974da59498e335243bbeb6", + "IPY_MODEL_47b7c8cef74948b38e7e680b7ee2b5ba" + ], + "layout": "IPY_MODEL_5e1d72dd82894042a30bc7f553b2f3c9" + } + }, + "31d477e7bbf64d5da099a2ddc220b041": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e6a018670104950bbd81db36004ae7b", + "placeholder": "​", + "style": "IPY_MODEL_14c0c114e39a44659dd436247f4e2ea6", + "value": "pytorch_model.bin: 100%" + } + }, + "00061d9e9e974da59498e335243bbeb6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_905ecc24d2e243ada92a0530089e7750", + "max": 90888945, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1febee6256bf435384c4cfc0e084e600", + "value": 90888945 + } + }, + "47b7c8cef74948b38e7e680b7ee2b5ba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b37d3fb184b24f8190f7432c14bc76f9", + "placeholder": "​", + "style": "IPY_MODEL_8d86a85fe5924ad39a416adf7b803974", + "value": " 90.9M/90.9M [00:00<00:00, 269MB/s]" + } + }, + "5e1d72dd82894042a30bc7f553b2f3c9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e6a018670104950bbd81db36004ae7b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "14c0c114e39a44659dd436247f4e2ea6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "905ecc24d2e243ada92a0530089e7750": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1febee6256bf435384c4cfc0e084e600": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b37d3fb184b24f8190f7432c14bc76f9": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d86a85fe5924ad39a416adf7b803974": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d502cd41b71f4a1c8d031025c4991e2a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_eab09fc7c565478dafe0c29aa6258f4b", + "IPY_MODEL_3bc8fbd9c32a4b7a908cadcd353d4f46", + "IPY_MODEL_0cebd09286804072b4426759f7e364b6" + ], + "layout": "IPY_MODEL_bace080952e942fa9cea706e25d5c7fa" + } + }, + "eab09fc7c565478dafe0c29aa6258f4b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ebe6d3ee30944d5d8369e752aae39783", + "placeholder": "​", + "style": "IPY_MODEL_88856523500645e89f633eff2b72c8f8", + "value": "tokenizer_config.json: 100%" + } + }, + "3bc8fbd9c32a4b7a908cadcd353d4f46": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_adc2f01d3c364253b8619bfdbf49ec76", + "max": 350, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_e926b56418204199b32b548d07798ac0", + "value": 350 + } + }, + "0cebd09286804072b4426759f7e364b6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2dd023eecfa04ea5b168c4a216c1f375", + "placeholder": "​", + "style": "IPY_MODEL_90440b84a782492ca4b4b36efa88c8ff", + "value": " 350/350 [00:00<00:00, 18.6kB/s]" + } + }, + "bace080952e942fa9cea706e25d5c7fa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebe6d3ee30944d5d8369e752aae39783": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "88856523500645e89f633eff2b72c8f8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "adc2f01d3c364253b8619bfdbf49ec76": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e926b56418204199b32b548d07798ac0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2dd023eecfa04ea5b168c4a216c1f375": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "90440b84a782492ca4b4b36efa88c8ff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e913f40cd9d644d3a5163ff688d22c9c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4f95597d0d444b05b77ce310568afba2", + "IPY_MODEL_91766aff8df64774a0ebecee48301667", + "IPY_MODEL_8260b76988be49d185c62326bcbdc0f7" + ], + "layout": "IPY_MODEL_b7690f09eeaa4347ba9e9197dc4743d4" + } + }, + "4f95597d0d444b05b77ce310568afba2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6cbf652b9e7740dd8f196ee62bb0d0ee", + "placeholder": "​", + "style": "IPY_MODEL_198fc260e8ae45348710aac8d27c611a", + "value": "vocab.txt: 100%" + } + }, + "91766aff8df64774a0ebecee48301667": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4af645a282eb4264a23283b3e8f33f22", + "max": 231508, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8aa6b00a371f48e69356e192cf8d247d", + "value": 231508 + } + }, + "8260b76988be49d185c62326bcbdc0f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9cd0ce4bfd2e405b83d68325c3985d8e", + "placeholder": "​", + "style": "IPY_MODEL_f3b4db4e62bb42a5a34440ae32be470d", + "value": " 232k/232k [00:00<00:00, 13.8MB/s]" + } + }, + "b7690f09eeaa4347ba9e9197dc4743d4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cbf652b9e7740dd8f196ee62bb0d0ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "198fc260e8ae45348710aac8d27c611a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4af645a282eb4264a23283b3e8f33f22": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8aa6b00a371f48e69356e192cf8d247d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9cd0ce4bfd2e405b83d68325c3985d8e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3b4db4e62bb42a5a34440ae32be470d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "026c4ead28964a51a1de48ce1e7e2f3d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d20dc23698db40f5bbeb5981b69ada25", + "IPY_MODEL_573a0464226c418fb8607fdb320a6d84", + "IPY_MODEL_d4473109afa6407e9f58d73c8ce6e715" + ], + "layout": "IPY_MODEL_84d3b2e43ec543309ef44f62a4a0e2f6" + } + }, + "d20dc23698db40f5bbeb5981b69ada25": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3bd31b4d32446ef913a704a37584429", + "placeholder": "​", + "style": "IPY_MODEL_45f9ea1d9ada4f3989e534575c130814", + "value": "tokenizer.json: 100%" + } + }, + "573a0464226c418fb8607fdb320a6d84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d5a4e7b297914911a335c43ab0229966", + "max": 466247, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_29594fbb2d924379936ad571e79739b9", + "value": 466247 + } + }, + "d4473109afa6407e9f58d73c8ce6e715": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_27b8be4bc6614ed5b1b5fa9e818f879e", + "placeholder": "​", + "style": "IPY_MODEL_a9ddeaa7d9f14c8c98cd6c093bd58dd1", + "value": " 466k/466k [00:00<00:00, 2.06MB/s]" + } + }, + "84d3b2e43ec543309ef44f62a4a0e2f6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f3bd31b4d32446ef913a704a37584429": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "45f9ea1d9ada4f3989e534575c130814": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d5a4e7b297914911a335c43ab0229966": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29594fbb2d924379936ad571e79739b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "27b8be4bc6614ed5b1b5fa9e818f879e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a9ddeaa7d9f14c8c98cd6c093bd58dd1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8b59e3b750b84837a5adc95b948210a9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2b818f8f715f4b1e8172e9e7f6ad68c6", + "IPY_MODEL_18750f0ae1c045b4b599597bb64a3633", + "IPY_MODEL_b2b86743bcf145069cec3310df056abb" + ], + "layout": "IPY_MODEL_81559a92eabe49b3b6ef508fff7695a4" + } + }, + "2b818f8f715f4b1e8172e9e7f6ad68c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_967fac20d88340c1bc0d05f751e550ed", + "placeholder": "​", + "style": "IPY_MODEL_4fb73911ae464a3b840c5d5fe830459a", + "value": "special_tokens_map.json: 100%" + } + }, + "18750f0ae1c045b4b599597bb64a3633": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ccdc53ba51554509afa78e19240baf5a", + "max": 112, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_25eb57496e4e4f4ebc491f1e10bd4626", + "value": 112 + } + }, + "b2b86743bcf145069cec3310df056abb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_34f54e0f181248e5911eda0b81cb003d", + "placeholder": "​", + "style": "IPY_MODEL_e225e7f9a65d46cdb8c255c150ef61fb", + "value": " 112/112 [00:00<00:00, 1.83kB/s]" + } + }, + "81559a92eabe49b3b6ef508fff7695a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "967fac20d88340c1bc0d05f751e550ed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4fb73911ae464a3b840c5d5fe830459a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ccdc53ba51554509afa78e19240baf5a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25eb57496e4e4f4ebc491f1e10bd4626": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "34f54e0f181248e5911eda0b81cb003d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e225e7f9a65d46cdb8c255c150ef61fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bb6d95c0f7b24ef9b7afc08c565ddd6e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b0c1b6dd77b844f0b92a0695db8868b9", + "IPY_MODEL_1a68194ed30f4fa99c934f36fc6ee9a4", + "IPY_MODEL_c410794eb26841febc337c28f80b6ccc" + ], + "layout": "IPY_MODEL_f1a781cd7a46445c8925f515c9b6e3a8" + } + }, + "b0c1b6dd77b844f0b92a0695db8868b9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2711401df356414e88734d0d4c249c99", + "placeholder": "​", + "style": "IPY_MODEL_331f83f1c42f4d7eb3c7094d01e80cdb", + "value": "1_Pooling/config.json: 100%" + } + }, + "1a68194ed30f4fa99c934f36fc6ee9a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ae64ab81e223431fa90ef46bbeb56832", + "max": 190, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1522e4b604544009627e70f66bc13af", + "value": 190 + } + }, + "c410794eb26841febc337c28f80b6ccc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6aaaa994839b43a2ba5f62babb18c88c", + "placeholder": "​", + "style": "IPY_MODEL_612f2baa2e0f4956a96f4ee96440b281", + "value": " 190/190 [00:00<00:00, 12.4kB/s]" + } + }, + "f1a781cd7a46445c8925f515c9b6e3a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2711401df356414e88734d0d4c249c99": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "331f83f1c42f4d7eb3c7094d01e80cdb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ae64ab81e223431fa90ef46bbeb56832": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1522e4b604544009627e70f66bc13af": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6aaaa994839b43a2ba5f62babb18c88c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "612f2baa2e0f4956a96f4ee96440b281": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file