Spaces:
Sleeping
Sleeping
Set the environment variable MODEL_PATH at entrypoint
Browse files- app/utils/download_model.py +21 -1
app/utils/download_model.py
CHANGED
@@ -2,9 +2,23 @@ import os
|
|
2 |
import requests
|
3 |
from transformers import AutoModel
|
4 |
|
|
|
|
|
|
|
|
|
5 |
def download_hf_model():
|
|
|
|
|
|
|
|
|
6 |
model_name = os.getenv("HF_MODEL_NAME")
|
7 |
model_dir = f"/home/user/data/models/{model_name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Authenticate with Hugging Face using the token, if available
|
10 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -16,6 +30,7 @@ def download_hf_model():
|
|
16 |
model = AutoModel.from_pretrained(model_name)
|
17 |
model.save_pretrained(model_dir)
|
18 |
print(f"Model {model_name} downloaded and saved to {model_dir}")
|
|
|
19 |
|
20 |
def download_gguf_model():
|
21 |
model_name = os.getenv("HF_MODEL_NAME")
|
@@ -23,9 +38,13 @@ def download_gguf_model():
|
|
23 |
os.makedirs(model_dir, exist_ok=True)
|
24 |
|
25 |
model_url = os.getenv("GGUF_MODEL_URL") # Assuming URL is provided as an env variable
|
26 |
-
|
27 |
model_file_path = os.path.join(model_dir, os.path.basename(model_url))
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
print(f"Downloading model from {model_url}...")
|
30 |
response = requests.get(model_url, stream=True)
|
31 |
if response.status_code == 200:
|
@@ -34,6 +53,7 @@ def download_gguf_model():
|
|
34 |
print(f"Model downloaded and saved to {model_file_path}")
|
35 |
else:
|
36 |
print(f"Failed to download the model. Status code: {response.status_code}")
|
|
|
37 |
|
38 |
def download_model():
|
39 |
model_class = os.getenv("MODEL_CLASS")
|
|
|
2 |
import requests
|
3 |
from transformers import AutoModel
|
4 |
|
5 |
+
def model_file_exists_and_valid(model_file_path):
|
6 |
+
# Check if the model file exists and has a size greater than 0
|
7 |
+
return os.path.exists(model_file_path) and os.path.getsize(model_file_path) > 0
|
8 |
+
|
9 |
def download_hf_model():
|
10 |
+
'''
|
11 |
+
Model File Path for HF Models: The download_hf_model function now includes a default model file path (pytorch_model.bin) check.
|
12 |
+
Adjust this path based on the expected model file type (e.g., TensorFlow or Flax models might have different names).
|
13 |
+
'''
|
14 |
model_name = os.getenv("HF_MODEL_NAME")
|
15 |
model_dir = f"/home/user/data/models/{model_name}"
|
16 |
+
model_file_path = os.path.join(model_dir, "pytorch_model.bin") # Assuming PyTorch model for simplicity
|
17 |
+
|
18 |
+
if model_file_exists_and_valid(model_file_path):
|
19 |
+
print(f"Model {model_name} already downloaded.")
|
20 |
+
os.environ['MODEL_PATH'] = model_file_path
|
21 |
+
return
|
22 |
|
23 |
# Authenticate with Hugging Face using the token, if available
|
24 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
30 |
model = AutoModel.from_pretrained(model_name)
|
31 |
model.save_pretrained(model_dir)
|
32 |
print(f"Model {model_name} downloaded and saved to {model_dir}")
|
33 |
+
os.environ['MODEL_PATH'] = model_file_path
|
34 |
|
35 |
def download_gguf_model():
|
36 |
model_name = os.getenv("HF_MODEL_NAME")
|
|
|
38 |
os.makedirs(model_dir, exist_ok=True)
|
39 |
|
40 |
model_url = os.getenv("GGUF_MODEL_URL") # Assuming URL is provided as an env variable
|
|
|
41 |
model_file_path = os.path.join(model_dir, os.path.basename(model_url))
|
42 |
|
43 |
+
if model_file_exists_and_valid(model_file_path):
|
44 |
+
print(f"Model {model_name} already downloaded.")
|
45 |
+
os.environ['MODEL_PATH'] = model_file_path
|
46 |
+
return
|
47 |
+
|
48 |
print(f"Downloading model from {model_url}...")
|
49 |
response = requests.get(model_url, stream=True)
|
50 |
if response.status_code == 200:
|
|
|
53 |
print(f"Model downloaded and saved to {model_file_path}")
|
54 |
else:
|
55 |
print(f"Failed to download the model. Status code: {response.status_code}")
|
56 |
+
os.environ['MODEL_PATH'] = model_file_path
|
57 |
|
58 |
def download_model():
|
59 |
model_class = os.getenv("MODEL_CLASS")
|