EduConnect / app /utils /chat_rag.py
dtyago's picture
init chat_rag
d131d3b
raw
history blame
6.59 kB
#list of librarys for requirement.txt
from langchain.document_loaders import PyPDFLoader
# Import embeddings module from langchain for vector representations of text
from langchain.embeddings import HuggingFaceEmbeddings
# Import text splitter for handling large texts
from langchain.text_splitter import CharacterTextSplitter
# Import vector store for database operations
from langchain.vectorstores import Chroma
# for loading of llama gguf model
from langchain.llms import LlamaCpp
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
from langchain.chains.router import MultiPromptChain
from langchain.chains import ConversationChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
def pdf_to_vec(filename):
document = []
loader = PyPDFLoader(filename)
document.extend(loader.load()) #which library is this from?
# Initialize HuggingFaceEmbeddings with the 'sentence-transformers/all-MiniLM-L6-v2' model for generating text embeddings
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
# Initialize a CharacterTextSplitter to split the loaded documents into smaller chunks
document_splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)
# Use the splitter to divide the 'document' content into manageable chunks
document_chunks = document_splitter.split_documents(document) #which library is this from?
# Create a Chroma vector database from the document chunks with the specified embeddings, and set a directory for persistence
vectordb = Chroma.from_documents(document_chunks, embedding=embeddings, persist_directory='./data') ## change to GUI path
# Persist the created vector database to disk in the specified directory
vectordb.persist() #this is mandatory?
return(vectordb)
#return collection # Return the collection as the asset
def load_llm():
#callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
llm = LlamaCpp(
#streaming = True,
model_path="/content/llama-2-7b-mini-ibased.Q5_K_M.gguf", #/content/data/llama-2-7b-mcq_2-gguf.gguf. # change to GUI path. llama-2-7b-mini-ibased.Q5_K_M.gguf llama-2-7b-mcq_2.Q5_K_M.gguf
#n_gpu_layers=-1,
n_batch=512,
temperature=0.1,
top_p=1,
#verbose=False,
#callback_manager=callback_manager,
max_tokens=2000,
)
return llm
#step 5, to instantiate once to create default_chain,router_chain,destination_chains into chain and set vectordb. so will not re-create per prompt
def default_chain():
sum_template = """
As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.
Your role entails:
Providing Detailed Explanations: Deliver comprehensive answers to these questions, elucidating the underlying technical principles.
Assisting in Exam Preparation: Support educators in formulating sophisticated exam and quiz questions, including MCQs, accompanied by thorough explanations.
Summarizing Course Material: Distill key information from course materials, articulating complex ideas within the context of advanced machine learning practices.
Objective: to summarize and explain the key points.
Here the question:
{input}"""
mcq_template = """
As a machine learning education specialist, your expertise is pivotal in deepening the comprehension of complex machine learning concepts for both educators and students.
Your role entails:
Crafting Insightful Questions: Develop thought-provoking questions that explore the intricacies of machine learning topics.
Generating MCQs: Create MCQs for each machine learning topic, comprising a question, four choices (A-D), and the correct answer, along with a rationale explaining the answer.
Objective: to create multiple choice question in this format
[question:
options A:
options B:
options C:
options D:
correct_answer:
explanation:]
Here the question:
{input}"""
prompt_infos = [
{
"name": "SUMMARIZE",
"description": "Good for summarizing and explaination ",
"prompt_template": sum_template,
},
{
"name": "MCQ",
"description": "Good for creating multiple choices questions",
"prompt_template": mcq_template,
},
]
destination_chains = {}
for p_info in prompt_infos:
name = p_info["name"]
prompt_template = p_info["prompt_template"]
prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
chain = LLMChain(llm=llm, prompt=prompt)
destination_chains[name] = chain
#default_chain = ConversationChain(llm=llm, output_key="text")
#memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
default_chain = ConversationalRetrievalChain.from_llm(llm=llm,
retriever=vectordb.as_retriever(search_kwargs={'k': 3}),
verbose=True, output_key="text" )
destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str)
router_prompt = PromptTemplate(
template=router_template,
input_variables=["input"],
output_parser=RouterOutputParser(),
)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
return default_chain,router_chain,destination_chains
def llm_infer(default_chain,router_chain,destination_chains,prompt):
chain = MultiPromptChain(
router_chain=router_chain,
destination_chains=destination_chains,
default_chain=default_chain,
#memory=ConversationBufferMemory(k=2), # memory_key='chat_history', return_messages=True
verbose=True,
)
response = chain.run(prompt)
return response