Spaces:
Running
Running
import os | |
import requests | |
from transformers import AutoModel | |
def model_file_exists_and_valid(model_file_path): | |
# Check if the model file exists and has a size greater than 0 | |
return os.path.exists(model_file_path) and os.path.getsize(model_file_path) > 0 | |
def write_model_path_to_txt_file(model_file_path): | |
# Write the model path to model_path.txt | |
with open('/home/user/data/models/model_path.txt', 'w') as f: | |
f.write(model_file_path) | |
def download_hf_model(): | |
''' | |
Model File Path for HF Models: The download_hf_model function now includes a default model file path (pytorch_model.bin) check. | |
Adjust this path based on the expected model file type (e.g., TensorFlow or Flax models might have different names). | |
''' | |
model_name = os.getenv("HF_MODEL_NAME") | |
model_dir = f"/home/user/data/models/{model_name}" | |
model_file_path = os.path.join(model_dir, "pytorch_model.bin") # Assuming PyTorch model for simplicity | |
if model_file_exists_and_valid(model_file_path): | |
print(f"Model {model_name} already downloaded.") | |
write_model_path_to_txt_file(model_file_path) | |
return | |
# Authenticate with Hugging Face using the token, if available | |
hf_token = os.getenv("HF_TOKEN") | |
if hf_token: | |
from huggingface_hub import HfFolder | |
HfFolder.save_token(hf_token) | |
print(f"Downloading model: {model_name}...") | |
model = AutoModel.from_pretrained(model_name) | |
model.save_pretrained(model_dir) | |
print(f"Model {model_name} downloaded and saved to {model_dir}") | |
write_model_path_to_txt_file(model_file_path) | |
def download_gguf_model(): | |
model_name = os.getenv("HF_MODEL_NAME") | |
model_dir = f"/home/user/data/models/{model_name}" | |
os.makedirs(model_dir, exist_ok=True) | |
model_url = os.getenv("GGUF_MODEL_URL") # Assuming URL is provided as an env variable | |
model_file_path = os.path.join(model_dir, os.path.basename(model_url)) | |
if model_file_exists_and_valid(model_file_path): | |
print(f"Model {model_name} already downloaded.") | |
write_model_path_to_txt_file(model_file_path) | |
return | |
print(f"Downloading model from {model_url}...") | |
response = requests.get(model_url, stream=True) | |
if response.status_code == 200: | |
with open(model_file_path, 'wb') as f: | |
f.write(response.content) | |
print(f"Model downloaded and saved to {model_file_path}") | |
else: | |
print(f"Failed to download the model. Status code: {response.status_code}") | |
write_model_path_to_txt_file(model_file_path) | |
def download_model(): | |
model_class = os.getenv("MODEL_CLASS") | |
if model_class == 'gguf': | |
download_gguf_model() | |
elif model_class == 'hf': | |
download_hf_model() | |
else: | |
print(f"Unsupported model class: {model_class}") | |
if __name__ == "__main__": | |
download_model() | |