Spaces:
Sleeping
Sleeping
from tinydb import TinyDB, Query, where | |
from tinydb.storages import MemoryStorage | |
import chromadb | |
from chromadb.api.types import EmbeddingFunction, Embeddings, Image, Images | |
from keras_facenet import FaceNet | |
from typing import Any | |
from datetime import datetime, timedelta | |
CHROMADB_LOC = "/home/user/data/chromadb" | |
class TinyDBHelper: | |
def __init__(self): | |
self.db = TinyDB(storage=MemoryStorage) | |
self.tokens_table = self.db.table('tokens') | |
def insert_token(self, user_id: str, token: str, expires_at: str): | |
self.tokens_table.insert({'user_id': user_id, 'token': token, 'expires_at': expires_at}) | |
def query_token(self, user_id: str, token: str) -> bool: | |
"""Query to check if the token exists and is valid.""" | |
User = Query() | |
# Assuming your tokens table contains 'user_id', 'token', and 'expires_at' | |
result = self.tokens_table.search((User.user_id == user_id) & (User.token == token)) | |
# Optionally, check if the token is expired | |
expires_at = datetime.fromisoformat(result[0]['expires_at']) | |
if datetime.utcnow() > expires_at: | |
return False | |
return bool(result) | |
def remove_token_by_value(self, token: str): | |
"""Remove a token based on its value.""" | |
self.tokens_table.remove((where('token') == token)) | |
###### Class implementing Custom Embedding function for chroma db | |
# | |
class UserFaceEmbeddingFunction(EmbeddingFunction[Images]): | |
def __init__(self): | |
# Intitialize the FaceNet model | |
self.facenet = FaceNet() | |
def __call__(self, input: Images) -> Embeddings: | |
# Since the input images are assumed to be `numpy.ndarray` objects already, | |
# we can directly use them for embeddings extraction without additional processing. | |
# Ensure the input images are pre-cropped face images ready for embedding extraction. | |
# Extract embeddings using FaceNet for the pre-cropped face images. | |
embeddings_array = self.facenet.embeddings(input) | |
# Convert numpy array of embeddings to list of lists, as expected by Chroma. | |
return embeddings_array.tolist() | |
# Usage example: | |
# user_face_embedding_function = UserFaceEmbeddingFunction() | |
# Assuming `images` is a list of `numpy.ndarray` objects where each represents a pre-cropped face image ready for embedding extraction. | |
# embeddings = user_face_embedding_function(images) | |
class ChromaDBFaceHelper: | |
def __init__(self, db_path: str): | |
self.client = chromadb.PersistentClient(db_path) | |
self.user_faces_db = self.client.get_or_create_collection(name="user_faces_db", embedding_function=UserFaceEmbeddingFunction()) | |
def query_user_face(self, presented_face: Any, n_results: int = 1): | |
return self.user_faces_db.query(query_images=[presented_face], n_results=n_results) | |
def print_query_results(self, query_results: dict) -> None: | |
for id, distance, metadata in zip(query_results["ids"][0], query_results['distances'][0], query_results['metadatas'][0]): | |
print(f'id: {id}, distance: {distance}, metadata: {metadata}') | |
# Initialize these helpers globally if they are to be used across multiple modules | |
tinydb_helper = TinyDBHelper() | |
chromadb_face_helper = ChromaDBFaceHelper(CHROMADB_LOC) # Initialization requires db_path | |